Corner complex scaling for the interior transmission eigenvalue problem

Séminaire IDEFIX

27th April 2023

Anne-Sophie Bonnet-Ben Dhia¹, Lucas Chesnel², Florian Monteghetti¹

¹POEMS (CNRS-INRIA-ENSTA Paris), Palaiseau, France ²IDEFIX (EDF-INRIA-ENSTA Paris), Palaiseau, France Contact: florian.monteghetti@ensta-paris.fr

Introduction to ITEP	Singularities in ITEP 00000	Corner complex scaling	Numerical results	Conclusion O
Contents				

Introduction

- Objective
- Motivation
- Basics of ITEP
- Outline

2 Strongly-oscillating singularities in ITEP

- 3 Corner complex scaling
- 4 Numerical results

Introduction to ITEP ●○○○○	Singularities in ITEP 00000	Corner complex scaling	Numerical results	Conclusion 0
Objective				

Let $D \subset \mathbb{R}^d$ be an open bounded set, modeling a scatterer.

Interior Transmission Eigenvalue Problem (ITEP) Find $(k, (u, w)) \in \mathbb{C} \times [H^1(D)]^2$, $(u, w) \neq 0$, such that $\nabla \cdot [A\nabla u] + k^2 n u = 0$, $\Delta w + k^2 w = 0$ $(x \in D)$, with boundary conditions u = w, $\partial_{\nu_A} u = \partial_{\nu} w$ $(x \in \partial D)$, where $n \in L^{\infty}(D)$ and $A \in L^{\infty}(D, \mathbb{R}^{d \times d})$.

Definition: k is a transmission eigenvalue.

Interpretation: u is the total field and w is the incident field.

Introduction to ITEP ●○○○○	Singularities in ITEP 00000	Corner complex scaling	Numerical results	Conclusion 0
Objective				

Let $D \subset \mathbb{R}^d$ be an open bounded set, modeling a scatterer.

Interior Transmission Eigenvalue Problem (ITEP) Find $(\mathbf{k}, (u, w)) \in \mathbb{C} \times [H^1(D)]^2$, $(u, w) \neq 0$, such that $\nabla \cdot [A\nabla u] + \mathbf{k}^2 n \, u = 0$, $\Delta w + \mathbf{k}^2 w = 0$ $(x \in D)$, with boundary conditions u = w, $\partial_{\nu_A} u = \partial_{\nu} w$ $(x \in \partial D)$, where $n \in L^{\infty}(D)$ and $A \in L^{\infty}(D, \mathbb{R}^{d \times d})$.

Definition: k is a transmission eigenvalue.

Interpretation: u is the total field and w is the incident field.

Broad objective: Computation of k when A is such that $[H^1(D)]^2$ is not the right functional space, since the problem is not Fredholm.

Next: basics of ITEP in $[H^1(D)]^2$

Introduction to ITEP Singularities in ITEP Corner complex scaling Numerical results Conclusion on Notivation: why study transmission eigenvalues?

Transmission eigenvalues (TEs) are useful in inverse scattering.

Theorem. Faber-Krahn type estimate (Cakoni and Haddar 2012, Thm 3.5)

If A = I and $\inf_{x \in D} n(x) > 1$, then $\|n\|_{L^{\infty}(D)} > \frac{\lambda_1(D)}{k_1^2(D)}$.

 Introduction to ITEP
 Singularities in ITEP
 Corner complex scaling
 Numerical results
 Conclusion

 0<000</td>
 0000
 000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 <

Transmission eigenvalues (TEs) are useful in inverse scattering.

Theorem. Faber-Krahn type estimate (Cakoni and Haddar 2012, Thm 3.5)

If A = I and $\inf_{x \in D} n(x) > 1$, then $\|n\|_{L^{\infty}(D)} > \frac{\lambda_1(D)}{k_1^2(D)}$.

Definition. Space \mathcal{H} of Herglotz wave functions:

$$u^i(\boldsymbol{x}) = \int_{\mathbb{S}^2} e^{ik\boldsymbol{x}\cdot\hat{\boldsymbol{y}}} g_i(\hat{\boldsymbol{y}}) \,\mathrm{d}\sigma(\hat{\boldsymbol{y}}) \quad \mathrm{with} \quad g_i \in L^2(\mathbb{S}^2).$$

Definition. Far-field operator:

$$F(k,D): \mathcal{H} \ni u^i \mapsto u^s_\infty \in L^2(\mathbb{S}^2),$$

where u_{∞}^{s} is the far-field pattern of the scattered field $u^{s}.$

Introduction to ITEP ••••••
Singularities in ITEP •••••
Singularities in ITEP •••••
Corner complex scaling •••••
Numerical results ••••••
Conclusion •••••
Conclusion

Transmission eigenvalues (TEs) are useful in inverse scattering.

Theorem. Faber-Krahn type estimate (Cakoni and Haddar 2012, Thm 3.5)

If A = I and $\inf_{x \in D} n(x) > 1$, then $\|n\|_{L^{\infty}(D)} > \frac{\lambda_1(D)}{k_1^2(D)}$.

Definition. Space \mathcal{H} of Herglotz wave functions:

$$u^i(\boldsymbol{x}) = \int_{\mathbb{S}^2} e^{ik\boldsymbol{x}\cdot\hat{\boldsymbol{y}}} g_i(\hat{\boldsymbol{y}}) \,\mathrm{d}\sigma(\hat{\boldsymbol{y}}) \quad \mathrm{with} \quad g_i \in L^2(\mathbb{S}^2).$$

Definition. Far-field operator:

$$F(k,D): \mathcal{H} \ni u^i \mapsto u^s_\infty \in L^2(\mathbb{S}^2),$$

where u_{∞}^{s} is the far-field pattern of the scattered field u^{s} .

Theorem. Arbitrarily-small far field (Cakoni, Colton, and Haddar 2021) If (k, (u, w)) solves the ITEP, then $\forall \varepsilon > 0$, $\exists u_{\varepsilon}^{i} \in \mathcal{H} : \|u - u_{\varepsilon}^{i}\|_{L^{2}(D)} \leq \varepsilon$ and $\|F(k, D)u_{\varepsilon}^{i}\|_{L^{2}(\mathbb{S}^{2})} \leq \varepsilon$. \blacktriangleright If k is a nonscattering wavenumber, we can achieve $\varepsilon = 0$.

Introduction to ITEP	Singularities in ITEP 00000	Corner complex scaling	Numerical results	Conclusion 0
Standard sett	ing			

Weak formulation in
$$V = \left\{ (u, w) \in \left[H^1(D) \right]^2 \mid u - w \in H^1_0(D) \right\}$$

Find $(k, (u, w)) \in \mathbb{C} \times V \setminus \{0\}$ such that $\forall (\varphi_u, \varphi_w) \in V$,
 $(A \nabla u, \nabla \varphi_u)_D - (\nabla w, \nabla \varphi_w)_D = k^2 \left[(n \, u, \varphi_u)_D - (w, \varphi_w)_D \right].$

Introduction to ITEP	Singularities in ITEP	Corner complex scaling	Numerical results	Conclusion
00000				
Standard sett	ing			

Weak formulation in
$$V = \left\{ (u, w) \in \left[H^1(D) \right]^2 \mid u - w \in H^1_0(D) \right\}$$

Find $(k, (u, w)) \in \mathbb{C} \times V \setminus \{0\}$ such that $\forall (\varphi_u, \varphi_w) \in V$,
 $(A \nabla u, \nabla \varphi_u)_D - (\nabla w, \nabla \varphi_w)_D = k^2 \left[(n \, u, \varphi_u)_D - (w, \varphi_w)_D \right].$

Theorem (Bonnet-Ben Dhia, Chesnel, and Haddar 2011, Thm. 5.1) Let $A \in L^{\infty}(D, \mathbb{R}^{3 \times 3})$ symmetric p.d. and $n \in L^{\infty}(D, \mathbb{R}_+)$. If there is a neighborhood \mathcal{N} of ∂D s.t.: $\inf_{x \in \mathcal{N}} (I - A(x)) > 0$ and $\inf_{x \in \mathcal{N}} (1 - n(x)) > 0$, then $\sigma_{\mathsf{ITEP}} = \{k_n\}_{n \ge 1}$ with ∞ as the only possible accumulation point. Proof:

Introduction to ITEP	Singularities in ITEP	Corner complex scaling	Numerical results	Conclusion
00000				
Standard set	ting			

Weak formulation in
$$V = \left\{ (u, w) \in \left[H^1(D) \right]^2 \mid u - w \in H^1_0(D) \right\}$$

Find $(k, (u, w)) \in \mathbb{C} \times V \setminus \{0\}$ such that $\forall (\varphi_u, \varphi_w) \in V$,
 $(A \nabla u, \nabla \varphi_u)_D - (\nabla w, \nabla \varphi_w)_D = k^2 \left[(n \, u, \varphi_u)_D - (w, \varphi_w)_D \right]$.

Theorem (Bonnet-Ben Dhia, Chesnel, and Haddar 2011, Thm. 5.1) Let $A \in L^{\infty}(D, \mathbb{R}^{3 \times 3})$ symmetric p.d. and $n \in L^{\infty}(D, \mathbb{R}_{+})$. If there is a neighborhood \mathcal{N} of ∂D s.t.: $\inf_{x \in \mathcal{N}} (I - A(x)) > 0$ and $\inf_{x \in \mathcal{N}} (1 - n(x)) > 0$, then $\sigma_{\mathsf{ITEP}} = \{k_n\}_{n \ge 1}$ with ∞ as the only possible accumulation point. Proof: Bilinear form $a_k : V \times V \to \mathbb{C}$: $a_k(U, \Phi) \coloneqq (A \nabla u, \nabla \varphi_u)_D - (\nabla w, \nabla \varphi_w)_D + \Im(k)^2 [(n u, \varphi_u)_D - (w, \varphi_w)_D] + b_k(U, \Phi)$,

Introduction to ITEP	Singularities in ITEP	Corner complex scaling	Numerical results	Conclusion
00000				
Standard sett	ing			

Weak formulation in
$$V = \left\{ (u, w) \in \left[H^1(D) \right]^2 \mid u - w \in H^1_0(D) \right\}$$

Find $(k, (u, w)) \in \mathbb{C} \times V \setminus \{0\}$ such that $\forall (\varphi_u, \varphi_w) \in V$,
 $(A \nabla u, \nabla \varphi_u)_D - (\nabla w, \nabla \varphi_w)_D = k^2 \left[(n \, u, \varphi_u)_D - (w, \varphi_w)_D \right]$.

Theorem (Bonnet-Ben Dhia, Chesnel, and Haddar 2011, Thm. 5.1) Let $A \in L^{\infty}(D, \mathbb{R}^{3 \times 3})$ symmetric p.d. and $n \in L^{\infty}(D, \mathbb{R}_{+})$. If there is a neighborhood \mathcal{N} of ∂D s.t.: $\inf_{x \in \mathcal{N}} (I - A(x)) > 0 \text{ and } \inf_{x \in \mathcal{N}} (1 - n(x)) > 0,$ then $\sigma_{\text{ITEP}} = \{k_n\}_{n \ge 1}$ with ∞ as the only possible accumulation point. Proof: Bilinear form $a_k : V \times V \to \mathbb{C}$: $a_k(U, \Phi) := \underbrace{(A \nabla u, \nabla \varphi_u)_D - (\nabla w, \nabla \varphi_w)_D + \Im(k)^2 \left[(n \, u, \varphi_u)_D - (w, \varphi_w)_D\right]}_{T\text{-coercive}} + \underbrace{b_k(U, \Phi)}_{\text{compact}},$ with $T(u, w) = (u, -w) + R_{\mathcal{N}}(u, w)$

Introduction to ITEP	Singularities in ITEP	Corner complex scaling	Numerical results	Conclusion
00000				
Standard sett	ing			

Weak formulation in
$$V = \left\{ (u, w) \in \left[H^1(D) \right]^2 \mid u - w \in H^1_0(D) \right\}$$

Find $(k, (u, w)) \in \mathbb{C} \times V \setminus \{0\}$ such that $\forall (\varphi_u, \varphi_w) \in V$,
 $(A \nabla u, \nabla \varphi_u)_D - (\nabla w, \nabla \varphi_w)_D = k^2 \left[(n \, u, \varphi_u)_D - (w, \varphi_w)_D \right]$.

Theorem (Bonnet-Ben Dhia, Chesnel, and Haddar 2011, Thm. 5.1) Let $A \in L^{\infty}(D, \mathbb{R}^{3 \times 3})$ symmetric p.d. and $n \in L^{\infty}(D, \mathbb{R}_{+})$. If there is a neighborhood \mathcal{N} of ∂D s.t.: $\inf_{x \in \mathcal{N}} (I - A(x)) > 0 \text{ and } \inf_{x \in \mathcal{N}} (1 - n(x)) > 0,$ then $\sigma_{\text{ITEP}} = \{k_n\}_{n>1}$ with ∞ as the only possible accumulation point. **Proof**: Bilinear form $a_k : V \times V \to \mathbb{C}$: $a_k(\boldsymbol{U},\boldsymbol{\Phi})\coloneqq (A\nabla u,\nabla\varphi_u)_D - (\nabla w,\nabla\varphi_w)_D + \Im(k)^2 \left[(n\,u,\varphi_u)_D - (w,\varphi_w)_D\right] + \underbrace{b_k(\boldsymbol{U},\boldsymbol{\Phi})}_{k},$ compact T-coercive with $T(u, w) = (u, -w) + R_N(u, w)$ where $R_N(u, w) = \chi_N(-2w, 0)$.

3/20

Approximation space: $V_h \subset V = H^1(\Omega) \times H^1_0(\Omega)$, isoparametric Lagrange elements of degree p.

Implementation: gmsh / fenicsx / PETSc / SLEPc.

4 / 20

Introduction to ITEP ○○○○●	Singularities in ITEP 00000	Corner complex scaling	Numerical results	Conclusion O
Outline				

Objective: Computation of transmission eigenvalues k when

I - A(x) changes sign around $x_t \in \partial D$,

leading to a non-Fredholm problem in $H^1(D)$.

Introduction to ITEP 00000	Singularities in ITEP	Corner complex scaling	Numerical results	Conclusion 0
Contents				

2 Strongly-oscillating singularities in ITEP

- Problem setting
- Local singularity analysis
- A new functional setting
- Numerical illustration
- 3 Corner complex scaling
- 4 Numerical results

 \triangle Nature of spectrum depends upon (σ_1, σ_2) :

Proposition (Dispersion relation). Local solutions have the form $\begin{bmatrix} u \\ w \end{bmatrix} (r,\theta) = \begin{bmatrix} \Phi_0^u(\theta) \\ \Phi_0^w(\theta) \end{bmatrix} + \sum_{\eta \in H(\sigma_1,\sigma_2)} r^{i\eta} \begin{bmatrix} a_\eta \Phi_\eta^u(\theta) \\ b_\eta \Phi_\eta^w(\theta) \end{bmatrix},$ where $(\Phi_\eta^u, \Phi_\eta^w) \in [H^1_{\mathsf{per}}(-\pi, \pi)]^2$ and $H(\sigma_1, \sigma_2)$ is:

 \triangle $\eta \in \mathbb{R}^* \Leftrightarrow$ strongly-oscillating singularities $r^{i\eta} \Phi_{\eta}(\theta) \notin [H^1(D)]^2$. 7/20

Proposition (Dispersion relation). Local solutions have the form $\begin{bmatrix} u \\ w \end{bmatrix} (r,\theta) = \begin{bmatrix} \Phi_0^u(\theta) \\ \Phi_0^w(\theta) \end{bmatrix} + \sum_{\eta \in H(\sigma_1,\sigma_2)} r^{i\eta} \begin{bmatrix} a_\eta \Phi_\eta^u(\theta) \\ b_\eta \Phi_\eta^w(\theta) \end{bmatrix},$ where $(\Phi_\eta^u, \Phi_\eta^w) \in [H^1_{per}(-\pi, \pi)]^2$ and $H(\sigma_1, \sigma_2)$ is: $H(\sigma_1, \sigma_2) \coloneqq \{\eta \in \mathbb{C}^* \mid \det \mathfrak{M}(\eta, \sigma_1, \sigma_2) = 0\},$ with $\mathfrak{M} \in \mathbb{C}^{6 \times 6}$.

 $\triangle \quad \eta \in \mathbb{R}^* \Leftrightarrow$ strongly-oscillating singularities $r^{i\eta} \Phi_{\eta}(\theta) \notin [H^1(D)]^2$. 7/20

 $\begin{array}{ll} \underline{\wedge} & \exists \eta \in \mathbb{R}^* : \, \det \mathfrak{M}(\eta, \sigma_1, \sigma_2) = 0 \Leftrightarrow \text{strongly-oscillating singularity:} \\ & r^{i\eta} \, \mathbf{\Phi}_{\eta}(\theta) \in [L^2(D) \backslash H^1(D)]^2. \end{array}$

 $\begin{array}{ll} \underline{\wedge} & \exists \eta \in \mathbb{R}^* : \, \det \mathfrak{M}(\eta, \sigma_1, \sigma_2) = 0 \Leftrightarrow \text{strongly-oscillating singularity:} \\ & r^{i\eta} \, \mathbf{\Phi}_{\eta}(\theta) \in [L^2(D) \backslash H^1(D)]^2. \end{array}$

Plot of singularity for $(\phi_1, \phi_2) = (\pi/2/\pi)$ and $(\sigma_1, \sigma_2) = (1.01, 0.5)$:

The local analysis suggests defining the singularity region:

$$\mathscr{R} \coloneqq \left\{ (\sigma_1, \sigma_2) \in \mathbb{R}^2 \, | \, \exists \eta \in \mathbb{R}^* : \, \det \mathfrak{M}_{\phi_1, \phi_2}(\eta, \sigma_1, \sigma_2) = 0 \right\}.$$

$$\begin{split} & (\sigma_1, \sigma_2) \in \mathscr{R} \Leftrightarrow \text{strongly-oscillating } r^{i\eta} \, \mathbf{\Phi}_{\eta}(\theta) \in [L^2(D) \setminus H^1(D)]^2. \\ & \Leftrightarrow \text{Fredholmness is lost in } H^1(D). \end{split}$$

The local analysis suggests defining the singularity region:

$$\mathscr{R} \coloneqq \left\{ (\sigma_1, \sigma_2) \in \mathbb{R}^2 \, | \, \exists \eta \in \mathbb{R}^* : \, \det \mathfrak{M}_{\phi_1, \phi_2}(\eta, \sigma_1, \sigma_2) = 0 \right\}.$$

$$\begin{split} & (\sigma_1, \sigma_2) \in \mathscr{R} \Leftrightarrow \text{strongly-oscillating } r^{i\eta} \, \mathbf{\Phi}_{\eta}(\theta) \in [L^2(D) \setminus H^1(D)]^2. \\ & \Leftrightarrow \text{Fredholmness is lost in } H^1(D). \end{split}$$

The local analysis suggests defining the singularity region:

$$\mathscr{R} \coloneqq \left\{ (\sigma_1, \sigma_2) \in \mathbb{R}^2 \, | \, \exists \eta \in \mathbb{R}^* : \, \det \mathfrak{M}_{\phi_1, \phi_2}(\eta, \sigma_1, \sigma_2) = 0 \right\}.$$

$$\begin{split} & (\sigma_1, \sigma_2) \in \mathscr{R} \Leftrightarrow \text{strongly-oscillating } r^{i\eta} \, \mathbf{\Phi}_{\eta}(\theta) \in [L^2(D) \setminus H^1(D)]^2. \\ & \Leftrightarrow \text{Fredholmness is lost in } H^1(D). \end{split}$$

Next: can we use H^1 -FEM when $(\sigma_1, \sigma_2) \in \mathscr{R}$?

Computation using H^1 -FEM for increasing N (# of DoF):

 Introduction to ITEP
 Singularities in ITEP
 Corner complex scaling
 Numerical results
 Conclusion

 0000
 000
 000
 000
 00000
 000000
 000000

 Numerical illustration of lack of convergence
 000
 000000
 000000
 000000

Computation using H^1 -FEM for increasing N (# of DoF):

Next: how can we discretize in $X_{\gamma}(D)$?

Introduction to ITEP 00000	Singularities in ITEP 00000	Corner complex scaling	Numerical results	Conclusion 0
Contents				

1 Introduction

2 Strongly-oscillating singularities in ITEP

3 Corner complex scaling

- Definition
- Validation

4 Numerical results

5 Conclusion

Introduction to ITEP Singularities in ITEP Corner complex scaling Numerical results Conclusion

Principle. Let $\alpha \in \mathbb{C}$. Define a new "ITEP α " such that: k is an $X_{\gamma}(D)$ -eigenvalue of ITEP $\iff k$ is a $H^1(D)$ -eigenvalue of ITEP α .

Assume $\gamma = 0$ and let $(u, w) \in X_{\gamma}(D)$. Intuitively, we would like

$$\begin{array}{ll} (\mathsf{ITEP}) & (u,w) \underset{r=|\boldsymbol{x}-\boldsymbol{x}_t|\to 0}{\sim} e^{i\eta \ln r} \, \boldsymbol{\Phi}_{\eta}(\theta) + \boldsymbol{c_0} & (\Im(\eta)=0) \\ & \downarrow \\ (\mathsf{ITEP}_{\boldsymbol{\alpha}}) & (u_{\boldsymbol{\alpha}}, w_{\boldsymbol{\alpha}}) \underset{r=|\boldsymbol{x}-\boldsymbol{x}_t|\to 0}{\sim} e^{i\frac{\eta}{\alpha} \ln r} \, \boldsymbol{\Phi}_{\eta}(\theta) + \boldsymbol{c_0} & \left(\Im\left(\frac{\eta}{\alpha}\right) < 0\right) \end{array}$$

Introduction to ITEP 00000 Singularities in ITEP 00000 Corner complex scaling Corner complex scaling: principle

Principle. Let $\alpha \in \mathbb{C}$. Define a new "ITEP α " such that: k is an $X_{\gamma}(D)$ -eigenvalue of ITEP $\iff k$ is a $H^1(D)$ -eigenvalue of ITEP α .

Assume $\gamma = 0$ and let $(u, w) \in X_{\gamma}(D)$. Intuitively, we would like

$$\begin{array}{ll} (\mathsf{ITEP}) & (u,w) \underset{r=|\boldsymbol{x}-\boldsymbol{x}_{t}|\to 0}{\sim} e^{i\eta\ln r} \, \boldsymbol{\Phi}_{\eta}(\theta) + \boldsymbol{c_{0}} & (\Im(\eta)=0) \\ & \downarrow \\ (\mathsf{ITEP}_{\boldsymbol{\alpha}}) & (u_{\boldsymbol{\alpha}},w_{\boldsymbol{\alpha}}) \underset{r=|\boldsymbol{x}-\boldsymbol{x}_{t}|\to 0}{\sim} e^{i\frac{\eta}{\alpha}\ln r} \, \boldsymbol{\Phi}_{\eta}(\theta) + \boldsymbol{c_{0}} & \left(\Im\left(\frac{\eta}{\alpha}\right) < 0\right) \end{array}$$

Principle. Let $\alpha \in \mathbb{C}$. Define a new "ITEP α " such that: k is an $X_{\gamma}(D)$ -eigenvalue of ITEP $\iff k$ is a $H^1(D)$ -eigenvalue of ITEP α .

Assume $\gamma = 0$ and let $(u, w) \in X_{\gamma}(D)$. Intuitively, we would like

$$\begin{array}{ll} (\mathsf{ITEP}) & (u,w) \underset{r=|\boldsymbol{x}-\boldsymbol{x}_{t}|\to 0}{\sim} e^{i\eta \ln r} \, \boldsymbol{\Phi}_{\eta}(\theta) + \boldsymbol{c_{0}} & (\Im(\eta)=0) \\ & \downarrow \\ (\mathsf{ITEP}_{\boldsymbol{\alpha}}) & (u_{\boldsymbol{\alpha}},w_{\boldsymbol{\alpha}}) \underset{r=|\boldsymbol{x}-\boldsymbol{x}_{t}|\to 0}{\sim} e^{i\frac{\eta}{\alpha} \ln r} \, \boldsymbol{\Phi}_{\eta}(\theta) + \boldsymbol{c_{0}} & \left(\Im\left(\frac{\eta}{\alpha}\right) < 0\right) \end{array}$$

Next: weak formulation?

Fig. Obstacle with scaling region B_1 highlighted.

Cartesian-to-Euler coordinate mapping $\Psi_i(x, y) = (z, \theta)$:

 $\Psi_i(B_i) = S_i \coloneqq (-\infty, \ln R_i) \times (0, \phi_2^{(i)}) \quad (i \in [\![1, N_c]\!]).$

Fig. Obstacle with scaling region B_1 highlighted.

Cartesian-to-Euler coordinate mapping $\Psi_i(x, y) = (z, \theta)$:

$$\Psi_i(B_i) = S_i \coloneqq (-\infty, \ln R_i) \times (0, \phi_2^{(i)}) \quad (i \in [\![1, N_c]\!]).$$

Weak formulation of ITEP α is obtained with the substitutions:

 $(\nabla u, \nabla \varphi_u)_{B_i} \to \left(\nabla_i^{(\alpha)} \tilde{u}_i, \nabla \varphi_{\tilde{u}_i} \right)_{S_i} \quad \text{and} \quad (u, \varphi_u)_{B_i} \to \left(\omega_i^{(\alpha)} \tilde{u}_i, \varphi_{\tilde{u}_i} \right)_{S_i},$ where

$$\nabla_i^{(\alpha)} u(z,\theta) \coloneqq \left(\begin{array}{c} \alpha \partial_z u\\ \frac{1}{\alpha} \partial_\theta u \end{array}\right), \ \omega_i^{(\alpha)}(z,\theta) \coloneqq \frac{1}{\alpha} e^{2z/\alpha}$$

Next: validation of this weak formulation?

Introduction to ITEP 00000	Singularities in ITEP 00000	Corner complex scaling	Numerical results	Conclusion 0
Contents				

1 Introduction

- 2 Strongly-oscillating singularities in ITEP
- 3 Corner complex scaling

4 Numerical results

- Problem setup
- Case A
- Case B

Conclusion

Case A: $(\sigma_1, \sigma_2) = (0.25, 0.9).$ \Rightarrow Discrete spectrum in $H^1(D).$ Case B: $(\sigma_1, \sigma_2) = (0.25, 1.1).$ \Rightarrow Discrete spectrum in $X_{\gamma}(D).$

 $\begin{array}{c|c} \mbox{Introduction to ITEP} & \mbox{Singularities in ITEP} & \mbox{Corner complex scaling} & \mbox{Numerical results} & \mbox{Conclusion} & \mbox{ooco} & \mbox{o$

Convergence w.r.t. N (# of DoF) and dependency on $\alpha = e^{i\theta}$ (scaling).

Convergence w.r.t. N (# of DoF) and dependency on $\alpha = e^{i\theta}$ (scaling).

Both weak formulations yield the same convergent spectrum.

Fig. Eigenfunctions $\Re(u_h)$ computed with $\alpha = 1$ (N = 78968). • No oscillations in the scaling region.

Convergence w.r.t. $N \ (\# \text{ of DoF})$.

Introduction to ITEP Singularities in ITEP Corner complex scaling Numerical results Conclusion of Case B: discrete spectrum in $X_{\gamma}(D)$

Convergence w.r.t. $N \ (\# \text{ of DoF})$.

Complex scaling enables to compute convergent eigenvalues

Introduction to ITEP Singularities in ITEP Corner complex scaling Numerical results Conclusion of Case B: discrete spectrum in $X_{\gamma}(D)$

Superposition of eigenvalues with and without scaling:

▶ Transmission eigenvalues depends only upon of sign $(arg(\alpha))$

No real transmission eigenvalues

Computed eigenfunctions $\Re(u_h)$ with scaling:

Case B with $\alpha = e^{i\pi/10}$, $k \simeq 1.95 + 2.17 \cdot 10^{-5} i$.

Introduction to ITEP	Singularities in ITEP	Corner complex scaling	Numerical results	Conclusion
Contents	1 4 A			

1 Introduction

2 Strongly-oscillating singularities in ITEP

3 Corner complex scaling

4 Numerical results

5 Conclusion

• Conclusion and outlook

Outlook

- Computation in $X_{\gamma}(D)$ for $\gamma \neq 0$ and finite?
- Meaning of transmission eigenvalues in X_γ(D): Dependency on γ? Is there a physical value of γ? Link with e.g. the linear sampling method?

• Case
$$A = A(k)$$
?

Outlook

- Computation in $X_{\gamma}(D)$ for $\gamma \neq 0$ and finite?
- Meaning of transmission eigenvalues in X_γ(D): Dependency on γ? Is there a physical value of γ? Link with e.g. the linear sampling method?

• Case
$$A = A(k)$$
?

Thanks for your attention.

Additional slides

Conclusion

References I

Outline

- Bonnet-Ben Dhia, A.-S., C. Carvalho, L. Chesnel, and P. Ciarlet (2016). "On the use of Perfectly Matched Layers at corners for scattering problems with sign-changing coefficients". In: *Journal of Computational Physics* 322, pp. 224–247. DOI: 10.1016/j.jcp.2016.06.037 (cit. on pp. 28–30).
- Bonnet-Ben Dhia, A.-S. and L. Chesnel (Sept. 2013). "Strongly oscillating singularities for the interior transmission eigenvalue problem". In: *Inverse Problems* 29.10, p. 104004. DOI: 10.1088/0266-5611/29/10/104004 (cit. on pp. 22–24, 48, 49).
- Bonnet-Ben Dhia, A.-S., L. Chesnel, and H. Haddar (2011). "On the use of T-coercivity to study the interior transmission eigenvalue problem". In: *Comptes Rendus Mathematique* 349.11, pp. 647–651. DOI: 10.1016/j.crma.2011.05.008 (cit. on pp. 8–12).
- Cakoni, F., D. Colton, and H. Haddar (Oct. 2021). "Transmission Eigenvalues". In: *Notices of the American Mathematical Society* 68.09, pp. 1499–1510. DOI: 10.1090/noti2350 (cit. on pp. 5–7).

References II

Cakoni, F. and H. Haddar (2012). "Transmission Eigenvalues in Inverse Scattering Theory". In: *Inside Out II*. Ed. by G. Uhlmann. Vol. 60. (hal-00741615). MSRI Publications, pp. 527–578 (cit. on pp. 5–7).