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Motivation

We are interested in optimization problems governed by hyperbolic partial differential equations

(PDEs) from inverse problem/data assimilation.

Figure: Expérience de sismique
réflexion.

@ Model : Xer(t) = AXer(t) + Bv(t).
@ Linear data : Yier(t) = CXeet(t)-
@ Objective function :
J(u) = %H ([[Cxret — Yousll) + Fa(llvIl)
Difficulties
@ large amounts of data to process
@ high resolution required.
@ backward-Forward optimization loops.

= essential to design scalable, highly efficient
parallelel methods.
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Domain Decomposition Methods

Replace solving a PDE in a large/complex domain by solving successively the same PDE in the

smaller/simpler subdmains

For PDEs
@ Overlapping Schwarz Method
- - - [Schwarz 1870]
@ Non-overlapping + Robin conditions
-+« Lions (1990).

@ Optimized conditions
- - - [Japhet-Nataf 2001], [Gander 2006].

For Optimal Control Problem

@ Schwarz Method for eliptic optimal

control
- - - [Benamou 1994], [Benamou-Despres

1996]

For time-dependent PDEs

@ Parareal
- - - [Lions-Maday-Turinici 01],
[Gander-Vandewalle 07]

@ Space-Time DD
- - - [Gander-Halpern-Nataf 99],
[Gander-Kwok-Mandal 16]

For Time Optimal Control Problem

@ PinT in optimization loops
- - -[Gétschel-Minion 19], [Glnther and al. 19]

@ ParaOpt

@ Domain decomposition in Time direction.
- - - [Gander-Kwok 16], [Leugering and al. 21]

- - - [Gander-Kwok-Salomon 20]
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Discription of the problem

Let T > 0, and Vi, Viar € L2(R).

We find a control v € L2(0, T, L?(R)) s.t. y defined by
Oty+9oxy=v inRx(0,T),
y('a 0) = Vi,

verifies the exact constraint

y(, T) = Var.
We shall seek v that minimize the functional

10T,
J =5 [ gy

The above optimization problem has a unique solution v* € L2(R x (0, T)), given by
v =,
where,

t=0)= ini » t=T) =y 1
AN+ 0xA =0 y( ) Yini y( ) Yiar (1)

{(‘9, Y48y =A
Equivalent PDEs in y
Oty + 20y + Oxxy =0

with 2-point boundary at t = 0 and t = T = Schwarz Method.
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OUTLINE

e Schwarz Method for continuous settings



Time Direction Schwarz Algorithm
Starting with (2, A?) and (y2, A3), at iteration k > 1, we solve

oy + oyt =Nk X+ onyk =M
N+ o =0 oM+ 0N =0

t
I
Year
T Robin tranmission condition
. k yk _ _
Qi (¥, )2) i+ =gy A
1 S pyE 0 = —pyf N
AT =T/2 Q1 - (¥, AY)
Vv A\
yiui ‘ X

Subdomain system is equivalent with an optimal control problem
- - - [Leugeuring and al. 2021]
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Convergence

Theorem

The optimal choice is p = AT q= % which leads to an immediate convergence
after 2 iterations.

Remark

For general N time. wind.ows, with p; = Z*JT and g, = Mﬂlﬁ the method
converges after N iterations.

t

1| Jﬁar

gyl + X = avi N

i+1

S pyb M = —py A

L 2

Yini X
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Proof: Fourrier analysis

Using Fourier transform in space :

For Pimi, Par € C, we minimize

. SO LA
min J(v):f/O 4

\V]

vel2(0,T)
where the control ¥ is such that ¥

Oty +iwy=Vv te(0,T),

7(0) = Pinis
satisfies

j’( T) = JA’tar
The unique solution ¥* € [2(0, T) is given by
=3,

where,

Oy +iwy = X
IX+iwd=0

¥(0) = Jini , ¥(T) = Jrar
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Fourier Analysis setting: Convergence Factor

Let Jini = Jhur = 0. Denote by £¥ the Robin terms.
Starting from £ and £2, at iteration k > 1, we solve (2) in (0, AT) and (AT, T) with

ok | 8k _ k-1 tk ok QK
ayi + M =& then update é}( =qy2 + A2

—ppE+ 38 =& & =-ppr+ XM
Convergence factor is the /| p| defined by

£ = pé&f 2

. _1-pAT 1-—qAT
pi=rP9) =T AT T5 gAT
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OUTLINE

e Schwarz Method for discrete model



Fully discrete optimal control problem

We consider y and v periodic in space of periodic one.

M
. 1 M 1 2
min  J(v',...,v") = AXAtE E v |5

m=1

where the control (v',...,v™)is st. (y,..., ym) verifies,form=1,.... M
m—1 m—1 m—1
{ it/ S/t /1

U

At ax
}7 = )ﬁnLj,

satisfies y = i ;.

Remark

Attt = At for yii = 0, y(., At) = Atv(., Aty = v — v,

, At AJ; Ax
}7 = }Gﬂhjyjo’ - )GarJ
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Convergence

T=1,Q=(0,1), At=1/160,r = 1/2;
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= We do not have convergence after 2 iterations!
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Schwarz Method for discrete model

Discrete Fourier Analysis

Discrete Fourier Transform

yjm71 o }//371
Ax
_ a—2mitAx

with o(¢) = - eAX (=0,
"

m

v

v

At = r fixed — maximum of ¢ is of order

Ax

~m j j
— a(O)y", Ax
N —1
}2 +a(e)“'" f R
>\ —-1im
74\1‘ -7 0
= Vini
= Var
(an™
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Convergence factor

CReD G

We solve (3)in (0,AT) (m=1,...,M/2)andin (AT, T) (m=M/2+1,..., M) with
the transmission conditions at the interface m = M/2

qyk M2, )\k M2 55—1 p}?k M2 | )\k M2 55_1
Then update

g = qyk M2 /\k M/2 g = py1k Mz )\k M/2
We get £ = péf=2 with

o= pailp, g, 0) = - —Prat0) |Bat(0)1* — gyar(f)

1 + qvai@) " 1Bat(0)Z + pyac(f)
M/2—1

where Bar(0) = (1 — o(O)ADY? and yar(l) = At Y~ |1 — o(O)ALP".

m=0
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Minimax Propblem

The convergence factor depends on ¢ and on At (Ax fixed by At), denoted by pa¢

i 4
min M3 loat(p, g, €)| (4)

pat is a function in
1 — Ato(0)P =1 — 4r(1 — r)sin® (mAX)
= new variable s = 4r(1 — r)sin® (TwAX), § € [0, Smax] With Smax = 4r(1 —r).

Optimial parameters AT PAT and gAT as parameters.
New minimax problem

i S 5
min omax lpat(p; g, 8)| (5)
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OUTLINE

e Asymptotic study of the convergence factor



One parameter case p = q

pAf(p7 S) = pAf(pv P; S)

i S 6
min ,max lpat(p, )| (6)

Theorem

For At small enough, Problem (6) has a unique solution px;. As At goes to 0,

Pat = V2AT Smar A2 4 0 (At’”z) ,

5 Bl 2v2 1/2 12
o2 lparls PRI =1 - e - A +o(At )
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Sketch of the proof

Step 1 : Solution of alternation equation

AT

Let pmax = ———.
p 'YAI(Smax)

odB2%,, PP 2) = = oy peulP )

has a unique solution 1 < pA; < Pmax. We introduce

patmax(P) = max par(p; 2),  patmin(P) = Sg;igmax pat(p; Z),

and the function
f= PAt,max + PAt,min-

Forp > 1,
Opat
op

(p,z) > 0.

= pat,max, Pat,min @nd f are strictly increasing.
f(1) < 0, f(Pmax) > 0 = unique px;.
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Sketch of the proof

Step 2 : pa; is the unique solution of the minimax problem

We can prove that (6) has solutions, which must be in (1, Pmax)-
- For p € (1, pa;), a careful investigation leads to

max |pat(p, S)| = —patmin(P) > —pat,min(Pat) = omax |pat(Pats S)|-

0<s<Smax
- Similarly, for p € (Pa¢, Pmax), We obtain

OSTSB;SW lpat(p; 8)| = pat,max(P) > patmax(Pat) = Onga;fm loat(Pat, S)I-

Therefore, pj; is the unique global minimum of (6).
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Sketch of the proof

Step 3 : Asymptotics of pj; and o max |pat(Pass S)| with respect to At
<SS Smax

We approximate pat,max(p) by pat(p, 0) using
|patmax(P) — pat(p, 0)| < Cp~'At.
= "approximate’ equation
par(p,0) = —pat(p; Smax),

whose solution pZ; ¢ can be calculated explicitly and has asymptotic

Ploat = V2AT S A2 + 0 (At‘1/2) ,

which implies

22

- : » Smax ) = : 70 =1-
par(Pigar ) = pat(Peg,at,0) VAT s

A2 4o (At”z) .
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Two parameters case

Theorem
For At small enough, Problem (6) has a unique solution (pa;, ga;)- When At — 0

par =P+ O(At), qar=q" + O(Al)

max  |pat(Par, Gar, S)| = p* + O (AL).

0<5<Sma

where p* ~ 1.1993, " ~ 0.0906 and p* =~ 0.0755.

Remark

@ (pas, gar) and pa: do not converge to corresponding continuous values.

@ Similar results as in the parabolic case
-+ - [Gander-Kwok 16]
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Sketch of the proof

Step 1 : Minimax problem (5) has solutions (pa;, gas) With 1 < pa; < Pmax- In
additions, the solution must verify

par(p, G, S = 0) = pat(P, 4, § = Smax)-
which implies g = qat,eq(P)- Denote by pat,eq(P; S) = pat(p, Qateq(P), S). We solve

i S
1 <P Proge 025 o IPatea(p: 8)]

Step 2 : The minimax solution must verify the equation
_pAf@Q(p7 S= 0) = _max pAf,CQ(p7 S)

0<8<Smax

Step 3 : We calculate the limit version of Equiocisllation system for At — 0.
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OUTLINE

e Numerical lllustrations



Optimized Convergence factor with one paramter

Pa: and o max |pat(Pas, S)| calculated numerically
SSSSmax

@ For At =1/160 : Equiocisllation and [ max pat(Pat; S) = pat(Pat, 0).
<SS Smax

0.8

[0l

20/25



Optimized Convergence factor with one paramter

parand  max  |pat(Pas, S)| calculated numerically
0<5<Smax

Q= At in different colors.
AXx

2v2
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Optimized Convergence factor with two paramters

@ For At =1/160 : Triple-Equiocisllation at (pa, Qar)-

10°® 104 107 10°
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Optimized Convergence factor with two paramters

@ Markers : |p" — o max |pat(PAt; Qar, S)||. Dash lines: best fit line CAt
<SS Smax
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Pratical performance

T=1,r=1/2, At =1/160, yini = yar = 0, random initial Robin terms.
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OUTLINE

e Conclusion and Perspective



Conclusion and Perspective

Conlusion
@ Asymptotic Analysis in case of Explicit Euler - Upwind scheme.
@ Numerical illustration for time-dependent advection.

Ongoing work

@ Convergence Analysis for other scheme (e.g. Lax-Wendroff).
@ Extension to multi-domain.
@ Para-Opt for Optimal transport Control.
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Thank you for your attention



	Schwarz Method for continuous settings
	Schwarz Method for discrete model
	Asymptotic study of the convergence factor
	Numerical Illustrations
	Conclusion and Perspective

