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Motivation

We are interested in optimization problems governed by hyperbolic partial differential equations
(PDEs) from inverse problem/data assimilation.

Figure: Expérience de sismique
réflexion.

Model : ẋref(t) = Axref(t) + Bv(t).

Linear data : yref(t) = Cxref(t).

Objective function :

J(u) =
1
2

F1(‖Cxref − yobs‖) + F2(‖v‖)

Difficulties
large amounts of data to process

high resolution required.

backward-Forward optimization loops.

⇒ essential to design scalable, highly efficient
parallelel methods.
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Domain Decomposition Methods
Replace solving a PDE in a large/complex domain by solving successively the same PDE in the
smaller/simpler subdmains

For PDEs
Overlapping Schwarz Method
· · · [Schwarz 1870]

Non-overlapping + Robin conditions
· · · Lions (1990).

Optimized conditions
· · · [Japhet-Nataf 2001], [Gander 2006].

For time-dependent PDEs
Parareal
· · · [Lions-Maday-Turinici 01],
[Gander-Vandewalle 07]

Space-Time DD
· · · [Gander-Halpern-Nataf 99],
[Gander-Kwok-Mandal 16]

For Optimal Control Problem
Schwarz Method for eliptic optimal
control
· · · [Benamou 1994], [Benamou-Desprès
1996]

For Time Optimal Control Problem
PinT in optimization loops
· · ·[Götschel-Minion 19], [Günther and al. 19]

ParaOpt · · · [Gander-Kwok-Salomon 20]

Domain decomposition in Time direction.
· · · [Gander-Kwok 16], [Leugering and al. 21]

3 / 25



Discription of the problem
Let T > 0, and yini, ytar ∈ L2(R).
We find a control v ∈ L2(0,T , L2(R)) s.t. y defined by{

∂t y + ∂x y = v in R× (0,T ),
y(., 0) = yini,

verifies the exact constraint

y(.,T ) = ytar.

We shall seek v that minimize the functional

J(v) =
1
2

∫ T

0
‖v‖2

L2(R)
.

The above optimization problem has a unique solution v∗ ∈ L2(R× (0,T )), given by

v∗ = λ,

where, {
∂t y + ∂x y = λ

∂tλ+ ∂xλ = 0
y(t = 0) = yini , y(t = T ) = ytar (1)

Equivalent PDEs in y

∂tt y + 2∂tx y + ∂xx y = 0

with 2-point boundary at t = 0 and t = T ⇒ Schwarz Method.
4 / 25



OUTLINE

1 Schwarz Method for continuous settings

2 Schwarz Method for discrete model

3 Asymptotic study of the convergence factor

4 Numerical Illustrations

5 Conclusion and Perspective



Schwarz Method for continuous settings

Time Direction Schwarz Algorithm
Starting with (y0

1 , λ
0
1) and (y0

2 , λ
0
2), at iteration k ≥ 1, we solve{

∂ty k
1 + ∂x y k

1 = λk
1

∂tλ
k
1 + ∂xλ

k
1 = 0

{
∂ty k

2 + ∂x y k
2 = λk

2

∂tλ
k
2 + ∂xλ

k
2 = 0

x

t

∆T = T/2

Robin tranmission condition

qy k
1 + λk

1 = qy k−1
2 + λk−1

2

−py k
2 + λk

2 = −py k−1
1 + λk−1

1

Q1 : (y k
1 , λ

k
1)

Q2 : (y k
2 , λ

k
2)

yini

ytar

Subdomain system is equivalent with an optimal control problem
· · · [Leugeuring and al. 2021]
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Schwarz Method for continuous settings

Convergence

Theorem

The optimal choice is p =
1

∆T
, q =

1
∆T

, which leads to an immediate convergence
after 2 iterations.

Remark

For general N time windows, with pi =
1

2i−1∆T
and qi =

1
2N−i−1∆T

, the method
converges after N iterations.

x

t

Γi
qiy k

i + λk
i = qyk−1

i+1 + λk−1
i+1

−piy k
i+1 + λk

i+1 = −piy k−1
i + λk−1

i

yini

ytar
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Schwarz Method for continuous settings

Proof: Fourrier analysis

Using Fourier transform in space :

For ŷini, ŷtar ∈ C, we minimize

min
v̂∈L2(0,T )

J(v̂) =
1
2

∫ T

0
|v̂ |2

where the control v̂ is such that ŷ{
∂t ŷ + iωŷ = v̂ t ∈ (0,T ),

ŷ(0) = ŷini,

satisfies
ŷ(T ) = ŷtar

The unique solution v̂∗ ∈ L2(0,T ) is given by

v̂∗ = λ̂,

where, {
∂t ŷ + iωŷ = λ̂

∂t λ̂+ iωλ̂ = 0
ŷ(0) = ŷini , ŷ(T ) = ŷtar (2)
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Schwarz Method for continuous settings

Fourier Analysis setting: Convergence Factor

Let ŷini = ŷtar = 0. Denote by ξ̂k
i the Robin terms.

Starting from ξ̂0
1 and ξ̂0

2 , at iteration k ≥ 1, we solve (2) in (0,∆T ) and (∆T ,T ) with

qŷ k
1 + λ̂k

1 = ξk−1
1

−pŷ k
2 + λ̂k

2 = ξk−1
2

then update ξ̂k
1 = qŷ k

2 + λ̂k
2

ξ̂k
2 = −pŷ k

1 + λ̂k
1

Convergence factor is the
√
|ρ| defined by

ξ̂k
i = ρξ̂k−2

i

ρ := ρ(p, q) =
1− p∆T
1 + p∆T

· 1− q∆T
1 + q∆T
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Schwarz Method for discrete model

Fully discrete optimal control problem
We consider y and v periodic in space of periodic one.

min
v1,...,vM∈RNx

J(v1, . . . , vM ) = ∆x∆t
1
2

M∑
m=1

‖vm‖2
RNx

where the control (v1, . . . , vM ) is s.t. (y0, . . . , yM ) verifies, for m = 1, . . . ,M
ym

j − ym−1
j

∆t
+

ym−1
j − ym−1

j−1

∆x
= vm

j ,

y0
j = yini,j ,

satisfies yM
j = ytar,j .

Remark

At t1 = ∆t , for yini = 0, y(.,∆t) = ∆tv(.,∆t)⇒ vm−1
j → vm

j .


ym

j − ym−1
j

∆t
+

ym−1
j − ym−1

j−1

∆x
= λm

j ,

λm−1
j − λm

j

∆t
+
λm

j − λm
j+1

∆x
= 0,

y0
j = yini,j , yM

j = ytar,j 9 / 25



Schwarz Method for discrete model

Convergence

T = 1, Ω = (0, 1), ∆t = 1/160, r = 1/2;

⇒We do not have convergence after 2 iterations!

10 / 25



Schwarz Method for discrete model

Discrete Fourier Analysis

Discrete Fourier Transform

ym−1
j − ym−1

j−1

∆x
→ σ(`)ŷm,

λm
j − λm

j+1

∆x
→ σ̄(`)λ̂m

with σ(`) =
1− e−2πi`∆x

∆x
, ` = 0, . . . ,Nx − 1.



ŷm − ŷm−1

∆t
+ σ(`)ŷm−1 = λ̂m

λ̂m − λ̂m−1

∆t
− σ̄λ̂m = 0

y0 = ŷini

yM = ŷtar

(3)

∆t
∆x

= r fixed→ maximum of ` is of order (∆t)−1.
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Schwarz Method for discrete model

Convergence factor

0
(ŷ k,m

1 , λ̂k,m
1 )

tL
(ŷ k,m

2 , λ̂k,m
2 )

T

We solve (3) in (0,∆T ) (m = 1, . . . ,M/2) and in (∆T ,T ) (m = M/2 + 1, . . . ,M) with
the transmission conditions at the interface m = M/2

qŷ k,M/2
1 + λ̂

k,M/2
1 = ξ̂k−1

1 − pŷ k,M/2
2 + λ̂

k,M/2
2 = ξ̂k−1

2

Then update

ξ̂k
1 = qŷ k,M/2

2 + λ̂
k,M/2
2 ξ̂k

2 = −pŷ k,M/2
1 + λ̂

k,M/2
1

We get ξ̂k
i = ρξ̂k−2

i with

ρ := ρ∆t (p, q, `) =
1− pγ∆t (`)

1 + qγ∆t (`)
· |β∆t (`)|2 − qγ∆t (`)

|β∆t (`)|2 + pγ∆t (`)

where β∆t (`) = (1− σ(`)∆t)M/2, and γ∆t (`) = ∆t
M/2−1∑

m=0

|1− σ(`)∆t |2m.
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Schwarz Method for discrete model

Minimax Propblem

The convergence factor depends on ` and on ∆t (∆x fixed by ∆t), denoted by ρ∆t

min
p,q>0

max
`=0,...,Nx−1

|ρ∆t (p, q, `)| (4)

ρ∆t is a function in

|1−∆tσ(`)|2 = 1− 4r(1− r) sin2 (π`∆x)

⇒ new variable s = 4r(1− r) sin2 (πω∆x), s ∈ [0, smax] with smax = 4r(1− r).

Optimial parameters
1

∆T
⇒ p∆T and q∆T as parameters.

New minimax problem

min
p,q>0

max
0≤s≤smax

|ρ∆t (p, q, s)| (5)
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Asymptotic study of the convergence factor

One parameter case p = q

ρ∆t (p, s) := ρ∆t (p, p, s)

min
p>0

max
0≤s≤smax

|ρ∆t (p, s)| (6)

Theorem

For ∆t small enough, Problem (6) has a unique solution p∗∆t . As ∆t goes to 0,

p∗∆t =
√

2∆T smax.∆t−1/2 + o
(

∆t−1/2
)
,

max
0≤s≤smax

|ρ∆t (s, p∗∆t )| = 1− 2
√

2√
∆T smax

·∆t1/2 + o
(

∆t1/2
)
.
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Asymptotic study of the convergence factor

Sketch of the proof
Step 1 : Solution of alternation equation

Let pmax =
∆T

γ∆t (smax)
.

max
0≤s≤smax

ρ∆t (p, z) = − min
0≤z≤smax

ρ∆t (p, s).

has a unique solution 1 < p∗∆t < pmax. We introduce

ρ∆t,max(p) = max
0≤s≤smax

ρ∆t (p, z), ρ∆t,min(p) = min
0≤s≤smax

ρ∆t (p, z),

and the function
f = ρ∆t,max + ρ∆t,min.

For p > 1,
∂ρ∆t

∂p
(p, z) > 0.

.
⇒ ρ∆t,max, ρ∆t,min and f are strictly increasing.
f (1) < 0, f (pmax) > 0⇒ unique p∗∆t .
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Asymptotic study of the convergence factor

Sketch of the proof
Step 2 : p∗∆t is the unique solution of the minimax problem

We can prove that (6) has solutions, which must be in (1, pmax).

- For p ∈ (1, p∗∆t ), a careful investigation leads to

max
0≤s≤smax

|ρ∆t (p, s)| = −ρ∆t,min(p) > −ρ∆t,min(p∗∆t ) = max
0≤s≤smax

|ρ∆t (p∗∆t , s)|.

- Similarly, for p ∈ (p∗∆t , pmax), we obtain

max
0≤z≤smax

|ρ∆t (p, s)| = ρ∆t,max(p) > ρ∆t,max(p∗∆t ) = max
0≤s≤smax

|ρ∆t (p∗∆t , s)|.

Therefore, p∗∆t is the unique global minimum of (6).
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Asymptotic study of the convergence factor

Sketch of the proof
Step 3 : Asymptotics of p∗∆t and max

0≤s≤smax

|ρ∆t (p∗∆t , s)| with respect to ∆t

We approximate ρ∆t,max(p) by ρ∆t (p, 0) using

|ρ∆t,max(p)− ρ∆t (p, 0)| ≤ Cp−1∆t .

⇒ ’approximate’ equation

ρ∆t (p, 0) = −ρ∆t (p, smax),

whose solution p∗eq,∆t can be calculated explicitly and has asymptotic

p∗eq,∆t =
√

2∆T smax.∆t−1/2 + o
(

∆t−1/2
)
,

which implies

−ρ∆t (p∗eq,∆t , smax) = ρ∆t (p∗eq,∆t , 0) = 1− 2
√

2√
∆T smax

·∆t1/2 + o
(

∆t1/2
)
.
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Asymptotic study of the convergence factor

Two parameters case

Theorem

For ∆t small enough, Problem (6) has a unique solution (p∗∆t , q
∗
∆t ). When ∆t → 0

p∗∆t = p∗ + O (∆t) , q∗∆t = q∗ + O (∆t)

max
0≤s≤smax

|ρ∆t (p∗∆t , q
∗
∆t , s)| = ρ∗ + O (∆t) .

where p∗ ' 1.1993, q∗ ' 0.0906 and ρ∗ ' 0.0755.

Remark

(p∗∆t , q
∗
∆t ) and ρ∆t do not converge to corresponding continuous values.

Similar results as in the parabolic case
· · · [Gander-Kwok 16]
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Asymptotic study of the convergence factor

Sketch of the proof

Step 1 : Minimax problem (5) has solutions (p∗∆t , q
∗
∆t ) with 1 ≤ p∗∆t ≤ pmax. In

additions, the solution must verify

ρ∆t (p, q, s = 0) = ρ∆t (p, q, s = smax).

which implies q = q∆t,eq(p). Denote by ρ∆t,eq(p, s) = ρ∆t (p, q∆t,eq(p), s). We solve

min
1≤p≤pmax

max
0≤s≤smax

|ρ∆t,eq(p, s)|

Step 2 : The minimax solution must verify the equation

−ρ∆t,eq(p, s = 0) = max
0≤s≤smax

ρ∆t,eq(p, s)

Step 3 : We calculate the limit version of Equiocisllation system for ∆t → 0.
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Numerical Illustrations

Optimized Convergence factor with one paramter

p∗∆t and max
0≤s≤smax

|ρ∆t (p∗∆t , s)| calculated numerically

For ∆t = 1/160 : Equiocisllation and max
0≤s≤smax

ρ∆t (p∗∆t , s) ' ρ∆t (p∗∆t , 0).
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Numerical Illustrations

Optimized Convergence factor with one paramter
p∗∆t and max

0≤s≤smax

|ρ∆t (p∗∆t , s)| calculated numerically

r =
∆t
∆x

in different colors.

Markers :
∣∣∣∣1− max

0≤s≤smax

|ρ∆t (p∗∆t , s)|
∣∣∣∣. Dash lines :

2
√

2√
∆T smax

·∆t1/2.
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Numerical Illustrations

Optimized Convergence factor with two paramters

For ∆t = 1/160 : Triple-Equiocisllation at (p∗∆t , q
∗
∆t ).
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Numerical Illustrations

Optimized Convergence factor with two paramters

Markers :
∣∣∣∣ρ∗ − max

0≤s≤smax

|ρ∆t (p∗∆t , q
∗
∆t , s)|

∣∣∣∣. Dash lines: best fit line C∆t
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Numerical Illustrations

Pratical performance

T = 1, r = 1/2, ∆t = 1/160, yini = ytar = 0, random initial Robin terms.
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Conclusion and Perspective

Conclusion and Perspective

Conlusion

Asymptotic Analysis in case of Explicit Euler - Upwind scheme.

Numerical illustration for time-dependent advection.

Ongoing work

Convergence Analysis for other scheme (e.g. Lax-Wendroff).

Extension to multi-domain.

Para-Opt for Optimal transport Control.
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