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1. Scattering by a locally rough surface

I Consider scattering of time-harmonic acoustic waves by a penetrable
locally perturbed infinite plane (called a locally rough surface).

I This type of problems occurs in various areas of applications such as:
radar and sonar detection, remote sensing, diffractive optics and
nondestructive testing.

I Let Γ := {(x1, x2) : x2 = hΓ(x1), x1 ∈ R} represent a locally rough
surface, where hΓ ∈ C 2(R) has a compact support in R.
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1. Scattering by a locally rough surface

I Let k± > 0 be two different wave numbers in Ω±, respectively.

I Let d = (cos θd , sin θd) with θd ∈ (π, 2π).

I Given an incident plane wave ui (x , d) := e ik+x ·d , then the reference
wave u0(x , d) is generated by the incident field ui (x , d) and the
unperturbed two-layered medium, and is given by

u0(x , d) :=

{
ui (x , d) + ur (x , d), x ∈ R2

+,

ut(x , d), x ∈ R2
−,

where R2
± := {(x1, x2) ∈ R2 : x2 ≷ 0}.
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1. Scattering by a locally rough surface

I Let d r := (cos θd ,− sin θd) and d t := n−1(cos θd ,−iS(cos θd , n)) with
n = k−/k+.

I From the Fresnel formula, the reflected wave ur (x , d) and transmitted
wave ut(x , d) are given by

ur (x , d) := R(π + θd)e ik+x ·d r
, ut(x , d) := T (π + θd)e ik−x ·d

t
,

where

R(θ) :=
i sin θ + S(cos θ, n)

i sin θ − S(cos θ, n)
, T (θ) := R(θ) + 1 for θ ∈ R,

with

S(cos θ, n) =

{
− i
√

n2 − cos θ2 if | cos θ| ≤ n,√
cos θ2 − n2 if | cos θ| > n.

I If | cos θd | ≤ n, then d t = (cos θtd , sin θtd) with θtd ∈ [π, 2π] satisfying

cos θtd = n−1 cos θd .
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1. Scattering by a locally rough surface

I Direct scattering problem: find the total field utot = u0 + us such that
the total field utot and the scattered field us satisfy

∆utot + k2
±u

tot = 0 in Ω±,

[utot ] = 0,
[
∂utot/∂ν

]
= 0 on Γ,

lim
|x |→+∞

√
|x |
(
∂us

∂|x |
− ik±u

s

)
= 0 uniformly for all x̂ = x/|x | ∈ S1

±,

where [·] denotes the jump across the interface Γ.
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Inverse scattering by a locally rough surface

I Asymptotic behavior of the scattered wave us 1

us(x , d) =
e ik+|x |√
|x |

u∞(x̂ , d) + o

(
1√
|x |

)
, |x | → ∞, x ∈ Ω+,

where u∞(x̂ , d) is called the far-field pattern of the scattered field us(x , d).

I The inverse scattering problem with phased data

Given the scattered field us(x , d) or the far-field pattern u∞(x̂ , d),
determine the locally rough interface Γ.

I Existing numerical algorithms with phased scattered-field data

Li-Sun-Zhang’ 17, Liu-Zhang-Zhang’ 18, Zhang’ 20, Li-Yang-Zhang’ 21,
Li-Yang’ 22

1H. Ammari, E. Iakovleva and D. Lesselier, Multiscale Model. Simul. 3 (2005),
597–628.
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Imaging of interfaces with phaseless total-field data

I However, in many practical applications, only the intensity (or modulus)
of the field (phaseless data) is available.

I Given the phaseless total-field data

|u(x , d)| = |ui (x , d) + ur (x , d) + us(x , d)|, x ∈ ∂B+
R , d ∈ S1

−,

reconstruct the locally rough surface Γ.
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Direct imaging method for recovering the interface

Construct an indicator function I (z) directly from the data s.t. the
indicator function has a large contrast at the boundary and decays as z
moves away from the boundary.
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Direct imaging method for recovering the interface

Indicator function:

IP(z ,R) :=∫
∂B+

R

∣∣∣∣∣
∫
S1
−

{[
|utot(x , d)|2 −

(
1 + |R(θd + π)|2 +R(θd + π)e2ik+x2d2

)]
e ik+(x−z)·d

− e ik+(x′−z′)·d

}
ds(d)

∣∣∣∣∣
2

ds(x)

Remark: IP(z ,R) is an oscillatory integral if R is large.
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Direct imaging method for recovering the interface

Indicator function: IP(z ,R) := IS(z ,R) + IP,Res(z ,R), where

IS(z ,R) :=

∫
∂B+

R

|U(x , z)| ds(x) with

U(x , z) :=

∫
S1
−

us(x , d)e−ik+z·d +R(θd + π)e ik+(x ′−z)·d − e ik+(x ′−z ′)·dds(d).

We need to analyse the following properties.

I The properties of IS(z ,R) 2 3

I The asymptotic properties of IP,Res(z ,R) as R → +∞
Theory of oscillatory integrals

Uniform far-field asymptotics of the scattered wave us(x , d) as
|x | → +∞

2X. Liu, B. Zhang and H. Zhang, SIAM J. Imaging Sci. 11 (2018), 1629-1650.
3Hai-wen Zhang, Acta Mathematicae Applicatae Sinica, English Series 36 (2020),

119-133.
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Theory of oscillatory integrals

Lemma 1.1 (Z. Chen and G. Huang’ 17)

For any −∞ < a < b <∞, let u ∈ C 2[a, b] be real-valued and satisfy that
|u′(t)| ≥ 1 for all t ∈ (a, b). Assume that a = x0 < x1 < · · · < xN = b is a
division of (a, b) such that u′ is monotone in each interval (xi−1, xi ),
i = 1, . . . ,N. Then for any function φ defined on (a, b) with integrable
derivative and for any λ > 0,∣∣∣∣∫ b

a
e iλu(t)φ(t)dt

∣∣∣∣ ≤ (2N + 2)λ−1

[
|φ(b)|+

∫ b

a
|φ′(t)|dt

]
.
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Far-field asymptotics of the scattered field

Theorem 1 (L. Li, J. Yang, B. Zhang and H. Zhang’ 22)

Assume that k+ < k−. Then us(x , d) has the asymptotic behavior

us(x , d) =
e ik+|x |√
|x |

u∞(x̂ , d) + O(|x |−3/2),

uniformly for all θx̂ ∈ (0, π) and d ∈ S1
−.

Long Li (AMSS, CAS) 15 / 48



Far-field asymptotics of the scattered field

Theorem 2 (L. Li, J. Yang, B. Zhang and H. Zhang’ 22)

Assume k+ > k− and θc = arccos(k−/k+). Then us(x , d) has the asymptotic
behaviors

us(x , d) =
e ik+|x|√
|x |

u∞(x̂ , d) + usRes(x , d),

where

usRes(x , d) = O(|x |−3/4), |x | → +∞ uniformly for all θx̂ ∈ (0, π) and

d ∈ S1
−,

usRes(x , d) = O(|θc − θx̂ |−
3
2 |x |− 3

2 ), |x | → +∞ uniformly for all

θx̂ ∈ (0, θc) ∪ (θc , π/2) and d ∈ S1
−,

usRes(x , d) = O(|π − θc − θx̂ |−
3
2 |x |− 3

2 ), |x | → +∞ uniformly for all

θx̂ ∈ [π/2, π − θc ) ∪ (π − θc , π) and d ∈ S1
−.
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Direct imaging method for recovering the interface

IF (z) :=∫
S1

+

∣∣∣∣∣
∫
S1
−

u∞(x̂ , d)e−ik+z·dds(d) +

(
2π

k+

) 1
2

e−
iπ
4

(
R(θx̂)e−ik+x̂·z′ − e−ik+x̂·z

)∣∣∣∣∣
2

ds(x̂)

Theorem 3 (L. Li, J. Yang, B. Zhang and H. Zhang’ 23)

For z ∈ R2 and R > 0 large enough, we have IP(z ,R) = IS(z ,R) + IP,Res(z ,R),
with the residual term IP,Res(z ,R) satisfying

|IP,Res(z ,R)| ≤ C (1 + |z |)2R−1/3 as R → +∞.

Further, we have IS(z ,R) = IF (z) + IS,Res(z ,R) with the residual term
IS,Res(z ,R) satisfying

|IS,Res(z ,R)| ≤ C (1 + |z |)3R−1/4 as R → +∞.

I Remark: If R is large enough, then IP(z ,R) ≈ IS(z ,R).
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Direct imaging method for recovering the interface

The properties of Ip(z ,R)

I It is expected that IS(z ,R) takes a large value when z ∈ Γ and decays
as z moves away from Γ.

I If R is sufficiently large,

IP(z ,R) ≈ IS(z ,R) =

∫
∂B+

R

|U(x , z)|2dx .

Thus, if R is sufficiently large, it is expected that IP(z ,R) takes a large
value when z ∈ Γ and decays as z moves away from Γ.
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Numerical examples for recovering the interface

Example 1:

(a) 10% noise, k+ = 40,
k− = 80, R = 1.5

(b) 10% noise, k+ = 40,
k− = 80, R = 2

(c) 10% noise, k+ = 40,
k− = 80, R = 3

Figure: (a), (b) and (c) show the imaging results of IP(z ,R) with the measured
phaseless total-field data for different values of the radius R. The solid line
represents the actual curve.
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Numerical examples for recovering the interface

Example 2:

(a) 10% noise, k+ = 60,
k− = 30, R = 3

(b) 10% noise, k+ = 90,
k− = 45, R = 3

(c) 10% noise, k+ = 120,
k− = 60, R = 3

Figure: Imaging results of IP(z ,R) with the measured phaseless total-field data
for different values of the wave numbers k+ and k−. The solid line represents the
actual curve.
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2. Scattering by buried obstacles

Direct scattering problem: given an incident plane wave ui , find the total
field utot = u0 + us and the scattered field us such that

∆utot + k2
±u

tot = 0 in R2
±,

[utot ] = 0,
[
∂utot/∂ν

]
= 0 on Γ0 := {(x1, 0) : x1 ∈ R},

utot = 0 on ∂D,

lim
|x |→+∞

√
|x |
(
∂us

∂|x |
− ik±u

s

)
= 0 uniformly for all x̂ = x/|x | ∈ S1

±,
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Inverse scattering by buried obstacles

I The inverse scattering problem with phased data

Determine the buried obstacles D by using the scattered field us(x , d) or
the far-field pattern u∞(x̂ , d) with

us(x , d) =
e ik+|x |√
|x |

u∞(x̂ , d) + o

(
1√
|x |

)
, |x | → ∞, x ∈ R2

+,

Here u∞(x̂ , d) is called the far-field pattern of the scattered field us(x , d).

I Existing numerical algorithms with phased data

Coyle’ 00, Gebauer-Hanke-Kirsch-Muniz-Schneider’ 05,
Iakovleva-Ammari-Lesselier’ 05, Delbary-Erhard-Kress-Potthast-Schulz’ 08,
Park’ 10, Li-Li-Liu-Liu’ 15, . . .
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Imaging of obstacles with phaseless far-field data

Reconstruct the buried obstacle D using the phaseless far-field data |u∞|.
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Imaging of obstacles with phaseless far-field data

Translation invariance property of phaseless far-field data

Lemma 1.2 (J. Li, P. Li, H. Liu and X. Liu, Inverse Problems, 2015)

Define Dz := D + z with z = (z1, 0), z1 ∈ R. For the incident wave
ui (x , d) with d ∈ S−θc := {d = (cos θd , sin θd) : θd ∈ [π + θc , 2π− θc ]}, the
far-field patterns u∞(·, d ,D) and u∞(·, d ,Dz) associated with the
obstacles D and Dz , respectively, satisfy

u∞(x̂ , d ,Dz) = e ik−(z−x̂)·d t
u∞(x̂ , d ,D), x̂ ∈ S+

θc
,

where x̂ ∈ S+
θc

:= {x̂ = (cos θx̂ , sin θx̂) : θx̂ ∈ [θc , π − θc ]}. Here, θc = 0
for the case of k+ < k− and θc = arccos(k−/k+) for the case of k+ > k−.
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Imaging of obstacles with phaseless far-field data

Break the translation invariance of phaseless far-field data 4 5 6 7

Use the following superposition of two plane waves as the incident
field:

ui (x , d1, d2) := ui (x , d1) + ui (x , d2) = e ik+x ·d1 + e ik+x ·d2

with the incident directions d1, d2 ∈ S−θc .

The corresponding far field pattern is given by

u∞(x , d1, d2) := u∞(x , d1) + u∞(x , d2)

4B. Zhang and H. Zhang, J. Comput. Phys. 345 (2017), 58-73.
5B. Zhang and H. Zhang, Inverse Problems 34 (2018), 104005.
6X. Xu, B. Zhang and H. Zhang, SIAM J. Appl. Math. 78 (2018), 1737-1753.
7X. Xu, B. Zhang and H. Zhang, SIAM J. Appl. Math. 78 (2018), 3024-3039.
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Direct imaging method for locating small scatterers

Indicator function:

I (z)

=

∫
S+
θc

∫
S−θc

∫
S−θc

|u∞(x̂ , d1, d2)|2T (θd1 )e−ik−z·d
t
1T (θd2 )e ik−z·d

t
2ds(d1)ds(d2)ds(x̂)

−
∫
S−θc

T (θd)e ik−z·d
t

ds(d)

∫
S+
θc

∫
S−θc

|u∞(x̂ , d)|2T (θd)e−ik−z·d
t

ds(d)ds(x̂)

−
∫
S−θc

T (θd)e−ik−z·d
t

ds(d)

∫
S+
θc

∫
S−θc

|u∞(x̂ , d)|2T (θd)e ik−z·d
t

ds(d)ds(x̂),

Properties of I (z)

I (z) will take a large value in the neighborhood of ∂D ∪ ∂D ′ and decay as
z moves away from D ∪ D ′, where D ′ := {−x : x ∈ D}
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Direct imaging method for locating small scatterers

Example 3. Locating multiple small anomalies.

(a) (b) (c)

Figure: Imaging results of multiple small scatterers by direct imaging method with
phaseless far-field data with (b) 5% noise and (c) 10% noise for the case
k+ = 10π and k− = 1.45k+, where (a) shows the true scatterers.
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Newton iteration method for extended obstacles

Example 4. Reconstruction of multiple extended obstacles

(a) (b) (c)

Figure: Location and shape reconstruction of multiple obstacles from the phaseless
far-field data with 4% noise in the case k+ > k−. (a) The reconstruction result by

the direct imaging method at k
(1)
+ = 30 and k

(1)
− = k

(1)
+ /2. (b) The initial curve

for Newton iteration algorithm. (c) The reconstructed obstacle by Newton

iteration algorithm at k
(2)
+ = 30 and k

(2)
− = k

(2)
+ /2.
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3. Scattering by locally rough surfaces and buried obstacles

Given an incident plane wave ui , find the total-field utot = u0 + us and the
scattered-field us such that

∆utot + k2
±u

tot = 0 in Ω±,

[utot ] = 0,
[
∂utot/∂ν

]
= 0 on Γ,

B(utot) = 0 on ∂D,

lim
|x|→+∞

√
|x |
(
∂us

∂|x | − ik±u
s

)
= 0,


∆utot + k2

+u
tot = 0 in Ω+,

∆utot + k2
−n(x)utot = 0 in Ω−,

[utot ] = 0,
[
∂utot/∂ν

]
= 0 on Γ,

lim
|x|→+∞

√
|x |
(
∂us

∂|x | − ik±u
s

)
= 0,

where B denotes the boundary conditions and n ∈ L∞(D) is the refractive
index with <(n(x)) > 0, =(n(x)) ≥ 0 and n ≡ 1 in Ω−\D.

both the buried obstacle
and the locally rough
surface exist
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Inverse scattering by surfaces and obstacles

I Asymptotic behavior of us :

us(x , d) =
e ik+|x|√
|x |

u∞(x̂ , d) + o

(
1√
|x |

)
, |x | → ∞, x ∈ Ω+

I V± are open subsets of S±1 .

Uniqueness Problem

Can (Γ,D,B) and (Γ, n) be determined by u∞(x̂ , d) with (x̂ , d) ∈ V+ × V−?

I Uniqueness results for point source incidence

Liu-Zhang’ 10, Li-Wang-Zhang’ 19,
Li-Yang-Zhang’ 22
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Rellich lemma for the limited aperture case

I Let Γp denote the local perturbation of Γ.

I Let R0 > 0 be large enough such that Γp ∪ ∂D ⊂ BR0 .

I We call v ∈ H1(R2 \ BR0) a radiating solution of Helmholtz equation in
a two-layered medium if v satisfies

∆v + k2
±v = 0, in Ω2

±\BR0 , (1)

[v ] = 0, [∂x2v ] = 0, on Γ0 ∩ (Ω2 \ BR0), (2)

lim
|x |→+∞

√
|x |
(
∂|x |v − ik±v

)
= 0, uniformly for all x̂ ∈ S1

±. (3)
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Rellich lemma for the limited aperture case

I Let x̂ := (cos θx̂ , sin θx̂) with θx̂ ∈ (0, π).

I The far-field pattern of the two-layered Green function:

G∞(x̂ , y) :=
e i

π
4√

8πk+

{
e−ik+x̂ ·y +R(θx̂)e−ik+x̂ ·y ′ , x̂ ∈ S1

+, y ∈ R2
+,

T (θx̂)e−ik+(y1 cos θx̂+iy2S(cos θx̂ ,n)), x̂ ∈ S1
+, y ∈ R2

−.

I Far-field pattern of v :

v∞(x̂) =

∫
∂BR0

[
∂G∞(x̂ , y)

∂ν(y)
v(y)− ∂v(y)

∂ν(y)
G∞(x̂ , y)

]
ds(y), x̂ ∈ S1

+.

Theorem 4 (L. Li, B. Zhang and H. Zhang’ 23)

Let v be a radiating solution of the scattering problem (1)–(3). If v∞ = 0
on some open subset of S1

+, then we have v = 0 in R2 \ BR0 .
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Uniqueness theorem

Theorem 5 (L. Li, B. Zhang and H. Zhang’ 23)

Let u∞j (j = 1, 2) denote the far-field patterns for plane wave incidence
corresponding to Γj and Dj with the boundary condition Bj .

If u∞1 (x̂ , d) = u∞2 (x̂ , d) for (x̂ , d) ∈ V+ × V−, then we have Γ1 = Γ2,
D1 = D2 and B1 = B2.
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Uniqueness theorem

Theorem 6 (L. Li, B. Zhang and H. Zhang’ 23)

Let u∞j (j = 1, 2) denote the far-field patterns for plane wave incidence
corresponding to Γj and nj .

If u∞1 (x̂ , d) = u∞2 (x̂ , d) for (x̂ , d) ∈ V+ × V−, then we have Γ1 = Γ2 and
n1 = n2.
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4. Scattering in an inhomogeneous medium

I Given an incident field ui , which is governed by the Helmholtz equation
(∆ + k2)ui = 0 in R2, find utot = us + ui such that the total field utot

and the scattered field us satisfy

∆utot + k2qutot = 0 in R2,

lim
|x|→+∞

√
|x |
(
∂us

∂|x |
− ikus

)
= 0 uniformly for all x̂ = x/|x | ∈ S1,

where 1− q is compactly supported and D = {x ∈ R2 : 1− q 6= 0}.

I It is known that us has the asymptotic behavior

us(x) =
e ik|x |√
|x |

u∞(x̂ , d) + O
(
|x |−3/2

)
, |x | → ∞, x ∈ R2,

where u∞(x̂) is called the far-field pattern of the scattered field us(x).
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Non-scattering energy

If a penetrable obstacle D scatters some incoming wave trivially at the
wavenumber k > 0, then k is called a non-scattering energy.

I Corners always scatter (curvilinear polygonal/polyhedral corner)

CGO solutions: Blåsten-Päivärinta-Sylvester’ 14, Hu-Salo-Vesalainen’
16, Päivärinta-Salo-Vesalainen’ 17, Blåsten’ 18

Expansion methods: Elschner-Hu’ 15, Elschner-Hu’ 18

Free boundary methods: Cakoni-Vogelius’ 21, Salo-Shahgholian’ 21
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Weakly singular points

Definition of weakly singular points

The point O ∈ ∂D is called a weakly singular point of order m ≥ 2
(m ∈ N) if the subboundary Bε(O) ∩ ∂D for some ε > 0, after a necessary
coordinate translation and rotation, can be parameterized by the piecewise
polynomial x2 = f (x1), x1 ∈ (−ε/2, ε/2), where

f (x1) =

{ ∑
l∈N0

f +
l
l! x

l
1, −ε/2 < x1 ≤ 0,∑

l∈N0

f −l
l! x

l
1, 0 ≤ x1 < ε/2.

(4)

Here, the real-valued coefficients {f ±l }
∞
l=1 satisfy the relations

f +
l = f −l := fl , ∀ 0 ≤ l < m and f +

m 6= f −m ,

with fl = 0 for l = 0, 1. Moreover, the series (4) in x1 ≥ 0 (resp. x1 ≤ 0)
converges at x1 = 0.
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Weakly singular points always scatter

I ∂D is at least C 1 smooth around the
weakly singular points.

I Assumptions: q is analytic in D and |q(O)− 1|+ |∂1q(O)| > 0.

Theorem 7 (L. Li, G. Hu and J. Yang, JFA, 2023)

The penetrable scatterer D ⊂ R2 scatters every incoming wave, if ∂D
contains at least one weakly singular point O. Further, u cannot be
analytically continued from R2\D to Bε(O) for any ε > 0.
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Local uniqueness results

Theorem 8 (L. Li, G. Hu and J. Yang, JFA, 2023)

Let Dj (j = 1, 2) be two penetrable scatterers in R2 with the analytical
potential functions qj , respectively. If ∂D2 differs from ∂D1 in the presence
of a weakly singular point lying on the boundary of the unbounded
component of R2\(D1 ∪ D2), then the far-field patterns corresponding to
(Dj , qj) incited by any non-vanishing incoming wave cannot coincide.
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Conclusions

A direct imaging method is developed to reconstruct the locally rough
surfaces from phaseless total-field data.

A direct imaging method is proposed to determine the location of
small obstacles buried in the lower-half space from phaseless far-field
data.

The uniqueness is obtained for simultaneously determining locally
rough surfaces and buried obstacles in a two-layered medium, with
only limited-aperture far-field data measured.

Piecewise-analytic interfaces with weakly singular points of arbitrary
order always scatter.
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Ongoing and future work

To simultaneously reconstruct both the surface and buried obstacles.

To prove the uniqueness for a locally rough surface with impedance
condition by using limited-aperture far-field data (passive).

How about the case of more than two layers?

Do weakly singular points scatter for scattering by impenetrable
obstacles?
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Thank you!
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