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Statement of the problem

Let D ⊂ R3, be a bounded open set with smooth boundary such that
(R3 \D) is connected.
Let B = B(0, a) ⊃ D, a > 0.
Let the magnetic potential A ∈ W 1,∞(R3,R3) such that supp(A) ⊂ D.
Let the electric potential q ∈ L∞(R3,C) such that Im(q) ≥ 0, supp(q) ⊂ D.
We deal with a magnetic Schrödinger operator in three-dimentional case

HA,q = −(∇+ iA(x))2 + q(x) ≡ −∆−QA,q , x ∈ R3, (1)

where QA,q is a first order operator given by

QA,qv(x) = idiv(A(x)v(x)) + iA(x) · ∇v(x) − (|A(x)|2 + q(x))v(x), v ∈ H
1
loc(R

3
).

(2)
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Statement of the problem

We introduce the following scattering problem: Given an incident field
ui ∈ H1(D), find a total field u such that

HA,qu(x)− k2u(x) = 0, x ∈ R3,
u(x) = ui(x) + us(x), x ∈ R3,
lim

r→∞
r (∂rus − ikus) = 0, r = |x|,

(3)

where us ∈ H2
loc(R

3) is the scattered field and k is the wave number.

⇒ We will treat two inverse problems for the stable determination of the
magnetic potential and the electric potential appearing in (3) from scattered field
measurements.
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Well-posedness

The total field u satisfies the so-colled Lippmann-Schwinger equation

u(x) = ui(x) +

∫
R3

Φ(x, y)QA,qu(y) dy, x ∈ R3, (4)

where Φ denotes the fundamental solution to the Helmholtz equation

Φ(x, y) :=
1

4π

eik|x−y|

|x− y|
, x ̸= y. (5)

and

QA,qu(x) = idiv(A(x)u(x)) + iA(x) · ∇u(x)− (|A(x)|2 + q(x))u(x).

K. Krupchyk and G. Uhlmann, Uniqueness in an inverse boundary problem for
a magnetic Schrödinger operator with a bounded magnetic potential, Comm.
Math. Phys., 327, pp. 993-1009, (2014).

V. Serov, and J. Sandhu, Scattering solutions and Born approximation for the
magnetic Schrödinger operator, Inverse Problems in Science and Engineering, 27,
Issue 4, 422 - 438, (2019).

⇒ The Lippmann-Schwinger equation has a unique scattering solution u such that
us ∈ H1

loc(R
3).

The problem is well-posed
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Known results

J. Sylvester, G. Uhlmann, A global uniqueness theorem for an inverse
boundary value problem, Ann. of Math. 125 (1987), 153-169.

uniqueness result for the D-to-N map based on geometric optical solutions
implies uniqueness at a fixed energy for compactly supported potentials.

P. Hähner, and T. Hohage, New stability estimates for the inverse acoustic
inhomogeneous medium problem and applications, SIAM journal on
mathematical analysis, 33(3), 670-685, (2001).

Logarithmic stability for q when A = 0 from the far field pattern.

L. Tzou, Stability estimates for coefficients of magnetic Schrödinger equation
from full and partial boundary measurements, Communication in Partial
Differential Equations 33, 1911-1952, (2008).

Stability result for magnetic schrodinger equation from the corresponding
global Dirichlet to Neumann map.

H. Ben Joud, A stability estimate for an inverse problem for the Schrödinger
equation in a magnetic field from partial boundary measurements, Inverse
Problems 25, 045012 (23 pp), (2009).

Determining A and q of the magnetic schrödinger equation from D-to-N map.
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The direct problem in the near field setting
Let y ∈ ∂B be the location of a point source.

The total field u(·, y) generated by the point source satisfies

HA,qu(·, y)− k2u(·, y) = δy in R3, (6)

u(·, y) = Φ(·, y) + us
A,q(·, y) in R3, (7)

lim
r→∞

r
(
∂ru

s
A,q − ikus

A,q

)
= 0, r = |x|, (8)

where
the scattered field us

A,q(·, y) ∈ H2
loc(R

3).
the incident field is given by

Φ(x, y) :=
1

4π

eik|x−y|

|x− y|
, x ̸= y, (9)

and is the fundamental solution of the Helmholtz equation.
δy is the Dirac distribution at y.

⇒ The problem is well-posed

Amal Labidi Stability estimates (IDEFIX, LAMSIN) 9 / 29



Introduction
Stability analysis for near field data
Stability analysis for far field data

conclusions and perspectives

The near field operator
Construction of geometric optics solutions
Stability estimate for the magnetic field
Stability estimate for the electric potential

The near field operator

We define the near field operator NA,q : L2(∂B) → L2(∂B), as

NA,qh(x) :=

∫
∂B

us
A,q(x, y)h(y) ds(y), x ∈ ∂B, (10)

where us
A,q(·, y) is given by (7) and satisfying the Sommerfeld radiation condition

(8).

⇒ The inverse problem that we shall consider in the near field setting is to
recover A and q from the the near field operator NA,q .
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Gauge invariance

⇒ The magnetic potential A cannot be uniquely determined from near field
measurements outside B.

Given φ ∈ W 2,∞(R3), supp(φ) ⊂ B and let ũ = ue−iφ.

⇒ HA+∇φ,qũ = e−iφ(x)HA,qu. (11)

From the uniqueness of solutions and the fact that φ = 0 outside B, we
deduce that ∀y ∈ ∂B

us
A+∇φ,q(·, y) = (e−iφ(x) − 1)Φ(·, y) + e−iφ(x)us

A,q(·, y) in R3,

⇒ us
A+∇φ,q(·, y) = us

A,q(·, y) outside D.

⇒ Thanks to the identity curl(A) = curl(A+∇), where

curl(A) =
3∑

j,ℓ=1

(
∂aj

∂xℓ
−

∂ak

∂xj

)
dxj ∧ dxℓ, A = (aj)1≤j≤3.

⇒ Goal: To determine curl(A) and q from the knowledge of the near field
operator NA,q .
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Definitions and notations

Let M > 0, σ > 0 and γ > 0 be given.
Let define

* The class of admissible magnetic potentials Aσ(M) by

Aσ(M) :=
{
A ∈ W

2,∞
(R3

,R3
), Supp(A) ⊂ D, ∥A∥W2,∞ ≤ M,

and ∥ĉurlA∥L1
σ(R3) ≤ M

}
, (12)

where L1
τ (R

3), τ > 0, be the weighted L1(R3) space with norm

∥v∥L1
τ (R3) =

∫
R3

(1 + |ξ|2)τ/2|v(ξ)|dξ.

* The class of admissible electric potentials Qγ(M) by

Qγ(M) :=
{
q ∈ L

∞
(R3

,C), Im(q) ≥ 0, Supp(q) ⊂ D, ∥q∥L∞(D) ≤ M

and ∥q̂∥L1
γ (R3) ≤ M

}
. (13)
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Main results

Theorem (Stability estimates)

Let M > 0, σ > 0 and γ > 0. Then there exists a constant C > 0 such that for any
(Aj , qj) ∈ Aσ(M)× Qγ(M), j = 1, 2, we have

∥curl(A1) − curl(A2)∥L∞(D) ≤ C
(
κ
1/2

+ | log(κ)|
− σ

(σ+3)
)
, (14)

and
∥q2 − q1∥L∞(D) ≤ C

(
κ
1/2

+ | log(κ)|
− γσ

(σ+3)(2γ+3)
)
, (15)

where κ = ∥NA1,q1 − NA2,q2∥. Here C depends only on B, M , σ and γ.

Corollary 1 (Uniqueness)
Let A1, A2 ∈ Aσ(M), q1, q2 ∈ Qγ(M) and B ⊃ D. Then, we have

us
A1,q1

(x, y) = us
A2,q2

(x, y), ∀(x, y) ∈ ∂B × ∂B,

implies q1 = q2 and curlA1 = curlA2 in D.
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Construction of the solution: Method of geometrical optics

Let ω = ω1 + iω2 be a vector with ω1, ω2 ∈ S2, and ω1 · ω2 = 0.
Let Nω = ω · ∇.

Lemma 1

Let A ∈ W 2,∞(D) and q ∈ L∞(D) such that ∥A∥W2,∞(D) ≤ M , ∥q∥L∞(D) ≤ M

for M > 0, and Supp(A), Supp(q) ⊂ D. There exists s0 > 0 such that for any
s ≥ s0, ρ = sω ∈ C satisfying ρ · ρ = 0, there exist complex geometrical solution
u(·, ρ) ∈ H2(B) such that

u(x, ρ) = eix·ρ(eiφ(x,ω) + r(x, ρ)), (16)

to the equation HA,qu = k2u in D, where φ(x, ω) = N−1
ω (−ω ·A) and

∥r(·, ρ)∥Hm(B) ≤ Csm−1, 0 ≤ m ≤ 2 and ∥u(·, ρ)∥H2(B) ≤ Cs2eΛs, (17)

where C,Λ and s0 depend only on B, k and M .

L. Tzou, Stability estimates for coefficients of magnetic Schrödinger equation
from full and partial boundary measurements, Communication in Partial
Differential Equations 33, 1911-1952, (2008).
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Sketch of proof
Stability estimate for the magnetic field:

Let ξ ∈ R3, ω1, ω2 ∈ S2 be three mutually orthogonal vectors in R3.

For each s >
|ξ|
2

, let

ρ1 = s

iω2 +

−
ξ

2s
+

√√√√
1 −

|ξ|2

4s2
ω1


 = sω

∗
1 (s), (18)

ρ2 = s

−iω2 +

 ξ

2s
+

√√√√
1 −

|ξ|2

4s2
ω1


 = sω

∗
2 (s). (19)

For s ≥ s0 for some s0 sufficiently large: u1 solves H−A1,q1u1 = k2u1 in B
and u2 solves HA2,q2u2 = k2u2 in B and such that

uj(x, ρj) = eix·ρj (eiφj(x,ω
∗
j ) + rj(x, ρj)), (20)

where rj(·, ρj), j = 1, 2 satisfies

∥rj(·, ρj)∥Hm(D) ≤ Csm−1, 0 ≤ m ≤ 2, (21)

and φ1(x, ω∗
1) = N−1

ω∗
1
(ω∗

1 ·A1) and φ2(x, ω∗
2) = N−1

ω∗
2
(−ω∗

2 ·A2) are solutions
of

ω∗
1 · ∇φ1(·, ω∗

1) = ω∗
1 ·A1, ω∗

2 · ∇φ2(·, ω∗
2) = −ω∗

2 ·A2. (22)
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Sketch of the proof

Let A(x) := (A2 −A1)(x), q(x) := (q2 − q1)(x), x ∈ R3.
Then for any |ξ| ≤ s, we have the following identity

i

∫
D

A(x) · (u2∇u1 − u1∇u2) dx = 2s

∫
D

ω ·A(x)eix·ξdx+ R(ξ, s), (23)

with |R(ξ, s)| ≤ C ⟨ξ⟩.
Let aj(x) = A(x) · ej , j = 1, 2, 3, x ∈ R3 where (e1, e2, e3) is the canonical
basis of R3.
We set for j, ℓ = 1, 2, 3,

bjℓ(x) :=
∂aℓ

∂xj
(x)−

∂aj

∂xℓ
(x), x ∈ R3,

b̂jℓ(ξ) :=

∫
R3

eix·ξbjℓ(x)dx.
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Sketch of the proof

Lemma 2: (Estimate of the Fourier transform)

For any s ≥ s0 and ξ ∈ R3 such that |ξ| ≤ s the following estimate holds true,

|b̂jℓ(ξ)| ≤ C⟨ξ⟩
(
eΛs∥NA1,q1 − NA2,q2∥+ s−1 ⟨ξ⟩

)
(24)

for j, ℓ = 1, 2, 3, where C and Λ are positive constants independent of s, ξ and M .

Let s0 > 1 and s and R be two parameters satisfying s ≥ R ≥ s0.

Using (24) and the fact that for j = 1, 2,
∫
R3 ⟨ξ⟩σ |ĉurlAj(ξ)| dξ < M , for some

σ > 0∫
R3

|b̂jℓ(ξ)| dξ =

∫
⟨ξ⟩≤R

|b̂jℓ(ξ)| dξ +
∫
⟨ξ⟩≥R

|b̂jℓ(ξ)| dξ

≤ CR2
(
eΛs∥NA1,q1 − NA2,q2∥+ s−1R

)
+ 2MR−σ .
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Sketch of the proof

Choosing R = s1/(σ+3), we deduce that for s0 sufficiently large

∥bjℓ∥L∞(R3) ≤ C′(eΛ′s∥NA1,q1 − NA2,q2∥+ s−σ/σ+3
)
, ∀s ≥ s0. (25)

If ∥NA1,q1 −NA2,q2∥ ≤ ε0, for some ε0 > 0, such that − log(ε0) ≥ 2Λ′s0, then
taking s = −1

2Λ′ log(∥NA1,q1 − NA2,q2∥) in (25) implies

∥bjℓ∥L∞(R3) ≤ C′(∥NA1,q1−NA2,q2∥
1/2+

( −1

2Λ′ log(∥NA1,q1−NA2,q2∥)
)−σ/σ+3)

.

(26)
This inequality holds true if ∥NA1,q1 − NA2,q2∥ ≥ ε0 and we can write

∥bjℓ∥L∞(R3) ≤ M ≤ (M/
√
ϵ0)∥NA1,q1 − NA2,q2∥

1/2. (27)
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Sketch of proof

Stability estimate for the electric potential:

Apply the Hodge decomposition to A = A1 −A2 in the space W 2,∞(D,R3).
Then there exist φ ∈ W 2,∞(B) with supp(φ) ⊂ D such that

A = A1 −A2 = Ã+∇φ. (28)

We define
Ã1 = A1 −

1

2
∇φ, Ã2 = A2 +

1

2
∇φ. (29)

Using Morrey’s inequality, we get that Ã = Ã1 − Ã2 verifies

∥Ã∥W2,∞(B) ≤ C∥curlA1 − curlA2∥L∞(D), (30)

Due the gauge invariance of the scattered field and since φ|∂B = 0, we get

NÃj ,qj
= NAj ,qj , j = 1, 2. (31)
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Using the method of geometrical optics, we construct uj , j = 1, 2 (given by
(20)) for some s0. Using the Hodge decomposition and the Gauge invariance
(31), we obtain

Lemma 3

There exists s0 > 0 such that ∀s ≥ s0 and ξ ∈ R3 with |ξ| ≤ s the following
estimate holds true,

|q̂(ξ)| ≤ C
(
eΛs∥NA1,q1 − NA2,q2∥+ s∥curl(A)∥L∞(D) + s−1 ⟨ξ⟩

)
. (32)

The constants s0, C and Λ depend only on B, M and k.

We assume that for j = 1, 2,
∫
R3 ⟨ξ⟩γ |q̂j(ξ)| dξ < M, for some γ > 0.

⇒ From the stability estimate for the magnetic field and for s0 sufficiently large,
we obtain the stability estimate for the electric potential.
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The direct scattering problem in the far field setting

The direct scattering problem in the far field setting formally corresponds with
letting |y| → ∞ in the direction −d with d ∈ S2 and can be phrased as follows:

Given an incident plane wave ui(x, d) = eikx·d, x ∈ R3 where k is the wave
number and d ∈ S2, seek a total field uA,q(·, d) that satisfies{

HA,qu(·, d)− k2u(·, d) in R3,
u(·, d) = ui(x, d) + us

A,q(·, d) in R3,
(33)

where the scattered field us
A,q(·, d) ∈ H2

loc(R3)
and satisfies the Sommerfeld

radiation condition.
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The far field pattern

Representing us
A,q(·, d), d ∈ S2 in terms of the outgoing fundamental solution of

∆+ k2, it follows that as |x| → ∞

us
A,q(x, d) =

eik|x|

|x|

(
u∞
A,q(x̂, d) +O

(
1

|x|

))
, x̂ =

x

|x|
, (34)

where u∞
A,q(x̂, d) is defined to be the scattering amplitude (or far field

pattern).

⇒ The inverse problem that we shall consider in the far field setting is to
recover A and q from u∞

A,q(x̂, d), for all x̂, d ∈ S2.
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Gauge invariance

Given φ ∈ W 2,∞(R3), supp(φ) ⊂ B and let ũ = u(x)e−iφ(x)

HA+∇φ,qũ = e−iφ(x)HA,qu. (35)

Since φ = 0 outside B and the uniqueness of solutions, we can deduce that for
all d ∈ S2

us
A+∇φ,q(·, d) = (e−iφ(x) − 1)ui(·, d) + e−iφ(x)us

A,q(·, d) in R3,

This shows that

us
A+∇φ,q(·, d) = us

A,q(·, d) outside D.

⇒ The magnetic potential A cannot be uniquely determined from far field
measurements outside B.

⇒ Goal: To determine curl(A) and q from the far field u∞
A,q(x̂, d), for all

(x̂, d) ∈ S2 × S2.

Amal Labidi Stability estimates (IDEFIX, LAMSIN) 24 / 29



Introduction
Stability analysis for near field data
Stability analysis for far field data

conclusions and perspectives

Main results

Theorem 2 (Stability estimates)

Let M > 0, σ > 0, γ > 0 and ϵ > 0. Then there exist two constants C > 0 and
δ > 0 such that for all (Aj , qj) ∈ Aσ(M)× Qγ(M), j = 1, 2 verifying
∥u∞

A1,q1
− u∞

A2,q2
∥L2(∂B×∂B) < δ, we have

∥curl(A1)− curl(A2)∥L∞(D) ≤ C| log(κ)|−
σ

σ+3
+ϵ

, (36)

and
∥q2 − q1∥L∞(D) ≤ C| log(κ)|−

γσ
(σ+3)(2γ+3)

+ϵ
, (37)

where κ = ∥u∞
A1,q1

− u∞
A2,q2

∥L2(∂B×∂B). Here C depends only on D, M , a, ϵ, σ, δ
and γ.

Corollary 2 (Uniqueness)
Let A1, A2 ∈ Aσ(M), q1, q2 ∈ Qγ(M). Then, we have

u∞
A1,q1

(x̂, d) = u∞
A2,q2

(x̂, d), ∀(x̂, d) ∈ S2 × S2,

implies q1 = q2 and curlA1 = curlA2 in D.
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Sketch of proof

Relation between the scattered field and the far field pattern:

Lemma 4

Let A ∈ W 1,∞(D,R3) and q ∈ L∞(D,C) with Supp(A), Supp(q) ⊂ D and
Im(q) ≥ 0. For k > 0 fixed, we have

us
A,q(x, y) =

1

4π

eik|x|

|x|
eik|y|

|y|
u∞
A,q (x̂,−ŷ) +

1

|x||y|

(
1

|x|
+

1

|y|

)
Λ(x, y), x ̸= y,

(38)

where Λ(x, y) is uniformly bounded as |x| −→ ∞ and |y| → ∞.
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Lemma 5

Let M > 0 and 0 < θ < 1 be given. Let Aj ∈ W 1,∞(D,R3) and qj ∈ L∞(D,C)
such that ∥Aj∥W1,∞ ≤ M and ∥qj∥L∞ ≤ M . Then there exist a constants η > 0
that only depends on M , k, a and θ and a constant ω that only depends on a and
k such that

∥NA1,q1 − NA2,q2∥ ≤ η2 exp
(
−

(
− ln

∥u∞
A1,q1

− u∞
A2,q2

∥L2(S2×S2)

ωη

)θ)
,

where NAj ,qj , j = 1, 2 denote here the near field operators associated with
B = {x ∈ R3, |x| < 2a}.

P. Hähner, and T. Hohage, New stability estimates for the inverse acoustic
inhomogeneous medium problem and applications. SIAM journal on
mathematical analysis, 33(3), 670-685, (2001).

→ For the proof of the stability estimates, it’s based by using the Theorem 1 and
the Lemma 5.
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Conclusions and perspectives

Conclusions:
Stability estimates for the magnetic field and the electric potential from the
far field pattern u∞

A,q(x̂, d), ∀x̂, d ∈ S2.
Stability estimates for the magnetic field and the electric potential from the
near field operator NA,q .

Perspectives:
The uniqueness of the reconstruction of the domain D for q ̸= 0 and A ̸= 0.
Development analysis of sampling methods for the reconstruction of the D
support from the knowledge of the far-field data.
Analysis of the interior transmission problem for A ̸= 0.
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Thank you for your attention!
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