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@ The biharmonic Cauchy problem

© Cauchy problem in thin plate theory

9 Plate finite element for second order Cauchy problem

© Conclusion and Outlooks



@ The biharmonic Cauchy problem
o Equivalent formulation of the problem
@ The fading regularization method
@ Convergence of the continuous formulation
@ Convergence of the discrete formulation
@ Stopping criteria
@ Numerical implementation using the MFS
@ Numerical implementations using the FEM



Cauchy problem associated with the biharmonic equation

Au=0 YxeQ
ou

Au=v Vxe
Av=0 VxeQ
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Ty
Thin plate bending

Stokes flow
u : the deflection of the plate

u : the stream function
v : the bending moment v : the vorticity of the fluid
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Cauchy problem associated with the biharmonic equation

Au=0 VYxe u=@q Vxely
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No boundary condition is given on I';

olu, = % etv, =

— ill-posed problem in the sens of
Hadamard

the stability of the solution cannot be
guaranteed

— It’s an inverse problem !

— Cannot be solved by the usual methods




Examples of regularization methods

Based on a reformulation of the Cauchy problem :

@ The method based on minimization of an energy-like error Functional
(Andrieux et al. (2005-2006))

Transform the problem into two well-posed problem with mixed boundary conditions and minimize
the gap between the two field solutions.
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Examples of regularization methods

Based on a reformulation of the Cauchy problem :

The method based on minimization of an energy-like error Functional
(Andrieux et al. (2005-2006))

Transform the problem into two well-posed problem with mixed boundary conditions and minimize
the gap between the two field solutions.

Steklov-Poincaré algorithm (Belgacem et al. (2005))

Transform the problem into a Steklov-Poincaré problem, two direct problems with Dirichlet and
Neumann boundary data respectively.

Based on the regularization of the continuous problem :

Quasi-reversibility method (Lattes et al. (1967))

Second order ill-posed Cauchy problem ~~ Fourth order well-posed problem

Tikhonov methods (Tikhonov et al. (1986))

Regularization by adding a control term (well-posed problem).

Fading regularization method (Cimetiére et al. (2000,2001), Delvare (2000))

Iterative regularization by adding a control term that tend to 0 (well-posed problems).



Equivalent formulation of the problem

For ®; = (@4, Ya, pta, $a) a quadruplet of compatible data on I, (i.e.
®, € H(T;)), the biharmonic Cauchy problem is equivalent to :

U= (u,uy,v,v,) € HT) suchas:
U=9%, only

with

H() = {® = (p,%, p,¢) € X(I') such as Ju € 4
withv = Auand (u,u’,v,v") = (¢, ¥, 1, 9)},

such as
X(T) = H*() x H/*(T) x H~'/2(T') x H*/(I")

and
HP={ucH(Q) | AMu=0}.



The fading regularization method
Cimetiere et al. (2000,2001), Delvare (2000)

Basic idea : Seeking among all solutions of the equilibrium equation in €2, the one
that fits the best the boundary conditions available on I'y, with :
- independence to a regularization parameter,

- stability towards noisy data,



The fading regularization method
Cimetiere et al. (2000,2001), Delvare (2000)

Basic idea : Seeking among all solutions of the equilibrium equation in €2, the one
that fits the best the boundary conditions available on I'y, with :

- independence to a regularization parameter,

- stability towards noisy data,
1¥" intuition
Minimize |V — @42, V€ H(D)

xIll posed problem !



The fading regularization method
Cimetiere et al. (2000,2001), Delvare (2000)

Basic idea : Seeking among all solutions of the equilibrium equation in €2, the one
that fits the best the boundary conditions available on I'y, with :
- independence to a regularization parameter,

- stability towards noisy data,

1*" idea of regularization

U = Argmin {||[V - ®4)2 +c|V— @[} }
VeH(T)

v Well posed optimization problem (control on the I'; part),

v" Best agreement to the data (data relaxation),
x The solution depends on the choice of ¢ and P !



The fading regularization method
Cimetiere et al. (2000,2001), Delvare (2000)

Basic idea : Seeking among all solutions of the equilibrium equation in €2, the one
that fits the best the boundary conditions available on I'y, with :
- independence to a regularization parameter,

- stability towards noisy data,

Iterative algorithm

Ut = Argmin {[|[V — @47, 4 ¢|V — U} }
VeH(T) ’

v" A sequence of well-posed optimization problems,

v" Best agreement to the data (data relaxation),

v" Independence of the solution with respect to ¢ and ®,
x No theoretical convergence result of the algorithm.



The fading regularization method
Cimetiere et al. (2000,2001), Delvare (2000)

Basic idea : Seeking among all solutions of the equilibrium equation in €2, the one
that fits the best the boundary conditions available on I'y, with :
- independence to a regularization parameter,

- stability towards noisy data,

The fading regularization method

U = Argmin {||[V — @42 + ||V — U3}
VEH(T)

v" A sequence of well-posed optimization problems,
v" Best agreement to the data (data relaxation),

v" Independence of the solution with respect to c,

v~ Convergent algorithm.

—> Atiteration k, there exists a unique minimum characterized by the optimality equation :
(U — @, Vip, + (U — UK, V)p =0 WV € H(D)



Convergence of the continuous formulation

Let ®, be the compatible Cauchy data associated with the compatible
solution U, € H(T'). Then, the sequence (U¥)ycn generated by the iterative
algorithm verifies :

U= @, in H(,) strongly

U —~U, in H() weakly




Convergence of the continuous formulation

Let ®, be the compatible Cauchy data associated with the compatible
solution U, € H(T'). Then, the sequence (U¥)ycn generated by the iterative
algorithm verifies :

U= @, in H(,) strongly

UK —~U, in H() weakly

For all n € N, the sequence (Uk ) generated by the iterative algorithm verifies:

. n 2 n
U = Uefff 4+ YU = U+ 2 U — @, = (JU° - Ul
k=0 k=0

where U, is the compatible solution of the Cauchy problem.

4




Convergence of the continuous formulation

Forall n € N, the sequence (Uk )k generated by the iterative algorithm verifies:

n - 2 -
107 = Uelfe + 3 0~ O+ 2 0 = @l = 0° el
k=0 k=0

where U, is the compatible solution of the Cauchy problem.

@ The strong convergence

n
- The series ZHU’H'1 — CDdepd is bounded,
k=0
— |[U* — @4t tends t0 0,

— Uk — ®yonTy.
k—+o00



Convergence of the continuous formulation

For all n € N, the sequence (Uk ) generated by the iterative algorithm verifies:

., n 2 n
U7 = U+ D_IU = U+ 2D [0 — @i, = 10° — el
k=0 k=0

where U, is the compatible solution of the Cauchy problem.

@ The weak convergence

- Existence of a sub-sequence of (U*); that is weakly convergent to U,
o (||[U* — U.||%) is bounded, hence (U¥); is bounded in H(I")
— there exists a sub-sequence (UH),, of (U¥); such as :

u* — U, in H(F)
o lim [U¥— &% =0,hence lim UK =,
p—+oo d p——+oco

@ by uniquness of the limit on I'y: Uz|p, = @4
@ by uniquness of the harmonic extension (Holmgren’s theorem):

U,=U,onTl.



Convergence of the continuous formulation

Forall n € N, the sequence (Uk )k generated by the iterative algorithm verifies:

n - 2 -
107 = Uelfe 4+ 3 0 = O+ 20— @l = 0° el
k=0 k=0

where U, is the compatible solution of the Cauchy problem.

@ The weak convergence

- Existence of a sub-sequence of (U*); that is weakly convergent to U,
- Weak convergence of all the sequence (U*); to U, on T
— Proof by contradiction.



Convergence of the continuous formulation

Forall n € N, the sequence (Uk)k generated by the iterative algorithm verifies:

N n 2 n
U = Uefff + Y U = U+ 2 U — @, = (U° — Ul
k=0 k=0

where U, is the compatible solution of the Cauchy problem.

@ The weak convergence

- Existence of a sub-sequence of (U*); that is weakly convergent to U,
- Weak convergence of all the sequence (U*); to U, on T
— Proof by contradiction.

No equivalence of the harmonic extension (Holmgren’s theorem) in finite dimension.
Convergence of the discrete formulation ?




Convergence of the discrete formulation

o Hy(T"): characterization space of H(T") in finite dimension
@ The discrete fading regularization method :
Letc¢ > 0and U° € Hy(T),
UL € Hy(T) such as :
JEFH UG <JEFY(Va),  VVi € Hy(T) M
where JiT! (V) = ||Vw|r, — @a||7, + c||Vy — Uy||f- for Vi € Hy(T)
®,4: 4N,—vector of discrete data

o The elements of Hy(I") that fit at best the N, data elements

- If N; > N : a solution in the sense of least squares.
- If Ny < N : an infinity of solutions, defined to an element of the kernel of
the “discrete trace operator” on I'y :

Zy(I') = {Uy € Hy(I');  Uw|r, = 0}
Zy (T) = {Uy € Hy(T); (Uy,VN)r =0 VVy € Zy(I)}



Convergence of the discrete formulation

@ The discrete Cauchy problem can be defined as :

@

{ Find U} € ZF(I'))  such as :

(U — @4, Vy)r, =0, VYVy € Zz (D)

If UY = 0 then the sequence (va)k verifies the following properties :
o U\ czy(), Vk>0,

@ the sequence (va)k converges to the unique solution U} of the discrete Cauchy
problem (2).

(UKT! — @4, Vi), + (UM — U%, Vi)r =0, VVy € Hy(D)
U8 =25 +yh, Vb € Zy(D), Vyk € Zy (D) and Vk > 0
Vy =12y + ¥y, Vay € Zy(T) and Vyy € Zy (T)

= & =4, vk>0

with the initialization Uy = 0, we obtain that z§, = 23 = 0, Vk >0

= Uk ezi(), vk>o0



Convergence of the discrete formulation
@ The discrete Cauchy problem can be defined as :

Find U§ € Zy (T') suchas
. @
(Uy

— ‘Pd,VN>Fd = 0, VVy € ZAJ/'(F)

If UY = 0 then the sequence (va)k verifies the following properties :

o U\ czy(), Vk>0,
@ the sequence (va)k converges to the unique solution U} of the discrete Cauchy
problem (2).

As in the continuous case, we have :
. k+1 2
Jim UG — @}, =0
If the solution of the discrete Cauchy problem verifies compatibility hypothesis (i.e. Uy = ®qon Ty )

lim U — Uy lIL, =0
kggo” N N”l"d

By equivalence of finite dimensional norms, there exists ay > 0,

k=41 2 k+1 2
UV = UL IIE < el = UR I,



Convergence of the discrete formulation

@ The discrete Cauchy problem can be defined as :

@

{ Find U} € ZF(I'))  such as :

(U — @4, Vy)r, =0, VYVy € Zz (D)

If UY = 0 then the sequence (va)k verifies the following properties :
o U\ czy(), Vk>0,

@ the sequence (va)k converges to the unique solution U} of the discrete Cauchy
problem (2).

‘We can also prove that there exists M > 0 such that

< k

k e 2
0y = Uylir < ( )yM, Vk>0
¢+ ay

— Contraction of the discrete algorithm.



Stopping criteria for the fading regularization algorithm

The sequences composed by :

@ The scalar product
sp(UFH) = <Uk+1 B, U Uk>1“,1
@ The relaxation term
Je (U) = U |, — @alliyr,)
o The regularization term
I (U) = U = U,
o The value of the functional

TEN0) = U n, = @allFyr,y + cllUF = U7y



Stopping criteria for the fading regularization algorithm

The sequences composed by :

@ The scalar product
sp(UFHY) o= (UM — @, UM — Uk>rd§ 0, Vk>0
@ The relaxation term
I (U) = U, = @l N V>0
o The regularization term
I U) = U = UY[p), N VE>0
@ The value of the functional

JENU) = U |, = @allfyr,) + U = UMy, N V>0



Stopping criteria for the fading regularization algorithm

. c=10etd = 0% 6 c=10etd =3%
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Proposition of a new stopping criterion

According to the lemma, for compatible data &4, we have :

k k
. . 2 .
> U —U|f + - > U —®yf, = Ul — U - UL
j=0

=0 sHT()

s ()



Proposition of a new stopping criterion

According to the lemma, for compatible data &4, we have :

k k
. . 2 .
> U —U|f + - > U —®yf, = Ul — U - UL
j=0

- S+1(U)

s+ (V)
e For noisy data : $5™'(U) ~ SK1(U)

Idea : “estimate the value of the accumulation due to noise

k k
. . 2 . — —
sy =D Ut - U + Z( > U = @lF,—(k+ DU <1>d||2rd)
j=0

Jj=0



Proposition of a new stopping criterion

1" c=10etd = 0% c=10etd =3%
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Proposition of a new stopping criterion

6 c=10etd = 0% 6 c=10eté =3%
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Numerical implementation using the method of
fundamental solutions (MFS)

@ Discretization of the space of solutions Hy(T").
@ Meshless method.

@ Approximation by a linear combination of the fundamental solutions:

M
u(x) = u(a,b,¥;x) = > a7 (x¥) + biFa(xy), x€Q

= .X{fource points
» e,
. /T
=Q’I(x,y)z—glnr(x,y) x € Q, yERZ\Q, ' d'
1, 5 N .
F2(0y) =~ r () Inr(ny) x€Q, yeRAQ A
. o

r(x,y) = /(=) + (2 — )2

M. A. Boukraa  October 18,2022




Numerical implementation using the method of
fundamental solutions (MFS)

@ Discretization of the space of solutions Hy(T").
@ Meshless method.

@ Approximation by a linear combination of the fundamental solutions:

M
u(x) = u(a,b,¥;x) = > a7 (x¥) + biFa(xy), x€Q

j=1
xw»_.‘y{iourcepoinls

- X' = (ar,...,am, b1, ..., by) 2M—vector of o~ Te
unknowns, /L
? a4t
- ET = (u7 Un,V, V,n)~ <—>
s

@ Algebraic system
AX=U

ot A = A(x, Y;n).

M. A. Boukraa  October 18,2022




Resolution of the iterative algorithm using the MFS
@ For ¢ > 0 and U° = 0, we define the sequence X* that minimize J*:
JH(X) = | Aln, X — @al|f, + cf AX — AXE}

@ The iterative algorithm amounts to determining the sequence (X¥);
such that :
X = Argmin - J5TH(X)
XeRM



Resolution of the iterative algorithm using the MFS
@ For ¢ > 0 and U° = 0, we define the sequence X* that minimize J*:
JH(X) = | Aln, X — @al|f, + cf AX — AXE}

@ The iterative algorithm amounts to determining the sequence (X¥);
such that :
X = Argmin - J5T1(X)
XeRM

Inversible linear system

(A'lr, Alr, + cAAAXH = Allp, @4 4 cA'AXF




Numerical simulations

(1, 1)

o
ey source points i
A Tas
. Ry
A
5 ‘
. i p
e S
(0,0)
Unit disk

Analytic solution

vx € Q:

u™(x) = %xl (sinx; cosh x, — cos xi sinh xy),

Vv (x) = Au™(x) = cosh x, cosx; + sinh x; sin xy,

Noisy data

vxely:
pa(x)=1" (x) + & max(u” (x))p
Ya(x)=u (x) + 6 max(u (x))p
Ha(x)="(x) + 6 max(v""(x))p
Pa(x) =13 (X) + 6 max (v (x))p

- ¢ : the percentage of noise level,
- p: apseudo-random number in [—1, 1].

Q =40 x 40
A\ T'; : unknowns
+« 'y @ data



Independence towards the regularization parameter ¢
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0.6

0.4

0.2

Stability towards noise level

Un

05
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Ability to denoise the data

u
15
o
1
B
05
0
-05F — Analytic Analytic
* Reconstruction * Reconstruction
o Noisydata: § = 10% o Noisydata: § = 10%
-1 -4
0 1 2 3 0 1 2 3
curvilinear abscissa curvilinear abscissa
v Vion
10 10
o N
T EERg o - o g
o o
o
5 5
o
o
0 o 0 "
@
—— Analytic Analytic
* Reconstruction * Reconstruction
o Noisy data: § = 10% o Noisy data: § = 10% o
-5 -5 o
0 1 2 3 0 1 2 3
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Reconstructions on the boundary of a square domain (noisy data
located on two opposite sides)

u Un
—— Analytic Analytic
04 xReconstructioft *Reconstruction
o Data 1 o Data
5§ =3% 5§ =3%

0.2

05
0
0
-0.2
0 1 2 3 4 0 1 2 3 4
curvilinear abscissa curvilinear abscissa
v Von
2 . 2
Analytic —— Analytic ISEEEESESEESESIEISE:
xReconstruction x Reconstruction (0,0) (1,0)
o Data o Data
150 6=13% 1 5§ =13% Q =40 x 40
a AT : unknowns
1 0 +« 'y : data
-1
0.5
0 1 2 3 4 0 1 2 3 4
curvilinear abscissa curvilinear abscissa

M. A. Boukraa  October 18,2022



Reconstructions on the boundary of a square domain (noisy data
located on two adjacent sides)

u Un
—— Analytic Analytic
04 xReconstructiof 1 *Reconstruction
o Data o Data
5§ =3% 5§ =3%

0.2

05
0 (0, 1) N (1, 1)
-0.2
0 1 2 3 4 0 1 2 3 4
curvilinear abscissa curvilinear abscissa
v Von
2 ) 2
Analytic Analytic - :
*Reconstruction * Reconstructi
»Reco; . Deaal(;nslrualon (0,0) 1,0
15 8=13% 1t 5=3% Q =40 x 40
R A T'; : unknowns
1 0 +« 'y : data
05 1
0 1 2 3 4 0 1 2 3 4
curvilinear abscissa curvilinear abscissa



Reformulation of the Cauchy biharmonic problem

Coupled formulation

Au=v, in
U= pq, on Iy
Uy = Y, on Iy
Av =0, in Q
V= ld, onl'y
Vo = @, onl'y

H'(T) = (U= (U,U,V,V) € R'R" xR'xR"|
=Z(V,V))=KV+BV =0,
A(U,U',V) = KU + BU' — DV = 0}.

Factorized formulation

—Av =0, in
V= U, on Iy
Vo = Qa onl'y
—Au=v, in Q
U = @q, onlIy
Uy = Ya on Iy

H/(T) = {V=(V,V)) e RN xRY|
Z(V,V') =KV +BV' =0},

and for V € H(T),

H!T,V) = {U= (U,U) € RN x R'|
A(U,U',V) = KU + BU' — DV = 0}.



Numerical implementations using the FEM

Coupled formulation Factorized formulation
Letc > 0and U° = (0,0,0,0) (a) Letc; > 0and VO = (0,0)
Ukt — Argmin J£+l (W,P,S,T) vitH — (V"+17 V’k'H) = Argmin Jiffl (v, v
RN xRN xRN xRN RN xRV

under the equality constraints : £(W,P,S,T) = 0, under the equality constraints :

_ EWV,V):=KV+BV' =0
wrsm =[S 7 W] [2].
= converges towards Vopt = (Vopt, V/opt)

(b) Letc; > 0and U° = (0, 0)
Ut = (U]‘Jrl7 U’k+l) = Argmin Jf;rl(U7 U
RN xRN
under the equality constraints :

A(U,U") := KU + BU' = DV




Numerical implementations using the FEM

Coupled formulation

Letc > 0and U° = (0, 0,0, 0)
Find (U7, 1) € BY xRY xRV xRV xRV
VI U + () Vet =,
gt =o.

v ve [UT R
e % ] = 0]
Mr,pa + ¢ Mr U*
Mr, g + e Mp U™
Mr, pg + ¢ MpV*
Mr, ¢ + c MpV'*

F' =

Factorized formulation
(a)Letc; > 0and VO = (0,0)

Find (VVF', X € BY x RY x RY such as
VI VD 4 (MY v Ev) =,

=2V =0,

vt vET [vE F*

e T Be] - 15
=> converges towards Vopr = (Vopt, V/opt)
(b)Letcy > 0and U = (0,0)

Find (U, "1y e RY x BY x R" suchas
VLT U 4 (YAt =,

AU = V.
v v AT U F*
2 k+1| = "
A 0 ¢ Vopt



Reconstructions on the inner boundary of an annular domain
(factorized formulation)

u U,n
02
0.1
0
—— Analytic
. = 1%
-0.1 8 =3%
o 5=5%
0 01 02 03 04 05 0 01 02 03 04 05
curvilinear abscissa curvilinear abscissa
v Von
-0.6
-0.8 05 A T; : unknowns
E P
1 0 + 'y @ data
-1.2 -05
—— Analytic — Analytic
« 5=1% * 5=1%
-14 -5 =3% -1 <5 =3%
o §=5% o §=5%
0 01 02 03 04 05 0 01 02 03 04 05
curvilinear abscissa curvilinear abscissa



Reconstructions on the inner boundary of an annular domain
(coupled formulation)

02

01

-1.2

-14

u U,n
—— Analytic
« §=1%
6 =3%
o 5§ =5%
0 01 02 03 04 05 0 01 02 03 04 05
curvilinear abscissa curvilinear abscissa
v Vin
0.5
0
-0.5
—— Analytic — Analytic
« 5=1% 5 =1%
0§ =3% -1 *  § =3%
0§ =5% o §=5%
0 01 02 03 04 05 0 01 02 03 04 05

curvilinear abscissa

curvilinear abscissa

A T; : unknowns
+ 'y @ data



Reconstructions on the boundary of a square domain
(noisy data located on two opposite sides)

u Uy,
15

* Reconstruction
—— Analytic
o Data
5§ =3%

04

0.2

x

0, 1) (1, 1)

0 * Reconstruction 0
—— Analytic
o Data h
.02 § =3% .05
0 1 2 3 4 0 1 2 3 4
curvilinear abscissa curvilinear abscissa
v v
2 2 -
* Reconstruction HEE :
—— Analytic (0, 0) (1, 0)
o Data
15 1 5 =3% € =40 x 40
A\ T'; : unknowns
+ 'y : data
1 0
* Reconstruction
—— Analytic b
o Data s
5 = 3% -1
0.5
0 1 2 3 4 0 1 2 3 4
curvilinear abscissa curvilinear abscissa
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Reconstructions on the boundary of a square domain
(noisy data located on two adjacent sides)

u U,
15
* Reconstruction
0.4 —— Analytic
1 o Data
5§ =3%

0.2

0 ©.1
* Reconstruction 0
—— Analytic
o Data
.02 § =3% .05
0 1 2 3 4 0 1 2 3 4
curvilinear abscissa curvilinear abscissa
v v
2 3 -
* Reconstruction
—— Analytic X (0, 0)
2 o Data il
15 5 =3% Q=40 x 40
A\ T'; : unknowns
+ 'y : data
1
* Reconstruction
—— Analytic
o Data
8§ =3%
0.5
0 1 2 3 4
curvilinear abscissa curvilinear abscissa



© Cauchy problem in thin plate theory
@ Formulation of the problem
@ Discrete Kirchhoff finite elements
@ Numerical implementation of the iterative algorithm
@ Numerical results



Kirchhoff-Love hypotheses

K-L hypotheses,
normal section remains

The real
deformation

plane and normal
_____ 4] _—— _\L — to the mid-surface
of 3 —%—I HZ

@ "Sections normal to the middle plane remain plane during deformation”

@ "Sections normal to the middle plane remain normal to the middle plane during
deformation”
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Kirchhoff-Love hypotheses

K-L hypotheses,
normal section remains

The real
deformation

plane and normal
_____ 4 _%_ —_— _L — to the mid-surface
ow ( X

o

X_ay
ow

ay:—a
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K-L hypotheses,
normal section remains

The real
deformation

plane and normal
_____ 4 _%_ —_— _L — to the mid-surface
ow ( X

@ Variational formulation:
/((LV)’D(LV)W)(Sdedy:/ q(x,y)0w  dxdy
Q Q
N———

DA2w
Odw
+ Mp—— —Vudw| ds+ SWiR;
|5 -w S owik
a2 a2 22 1! . -
where (LV) = {W o7 2 axav] et D is the flexural rigidity of the plate.
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Cauchy problem in thin plate theory

@ Cauchy problem associated with the biharmonic equation with mechanical
boundary conditions that relate to the thin plate bending problem

A’w =0 in Q
W= @q onlIy
W = Ya onTy

M, = My onI'y
V=V onIy

@ The boundary conditions of the Kirchhoff thin plate theory amount to

identifying the quantities w, an ~ and the forces :

0? 0? 8w
M, =—-D |:Aw+(l—y)(2nxny?gy—n§a—);v )2‘6)) ):|
&w 2 82w”

62_8x2)+( ™) 5y

0
Vo=-D |:— +(1- 1/)6— |:nxny( o0y

on



Cauchy problem in thin plate theory

@ Cauchy problem associated with the biharmonic equation with mechanical
boundary conditions that relate to the thin plate bending problem

A’w =0 in
W = Qa on Fd
Wn = 1/14 on Fd

Mn = Md on Fd
Vn = Vd on Fd

@ The regularization functional becomes :
k 2 2 2
T W) = |lwir, — ballyzra ey +IWairy = Hallyyo oy + 1M, = Mally—1/2
2 k k
F1Varg = Vally—3/20,y + (I =W lla 2oy + e = w2

k k
+ 1My = Myl -1y + Ve = Vil =320y )
YW = (w,wn, My, V,) € H(T).
where ¢ > 0 and H(T") is the space of the compatible quadruplets.



- — —| Plate finite elements I— —— 7
¢! regularity for €O regularity for w and
the displacement w independent interpolation
for the rotation field

Example of non-conforming

1 1

1 1

| elements : 1

| -Adini1960 | : Example of thick plate :

| -Cheung 1968 | I elements : I

| Bazeley 1966 | | -Mimcs I

! -Melosh 1963 ! -DSQ

| 1 1 1
1 -DKMQ 1

1 1 ' '

R

Poor performance due to

c! regularity issue when
rotation field interpolation
comes from displacement field




- — —| Plate finite elements I— —— 7

Discrete Kirchhoff

Getridof C!
@! regularity for in a discrete way co regularity for w and
the displacement w independent interpolation
for the rotation field

Example of non-conforming I Discrete Kirchhoff (DK)

| Discrete Kirchhoff

| |

| | i

i v | finite elements

| -Adini1960 | : Example of thick plate :

| -Cheung 1968 | Neglecting the shear force I elements : I

| _Bazel ey 1966 1 by applying discrete Kirchhoff’s _MITC4

1 1 theory (at corner nodes | |

{ Melosh 1963 I and element edges) | DsQ I

| | | -DKMQ |
' '

RN Vol

Example of DK finite
elements :

Poor performance due to

cl! regularity issue when
rotation field interpolation
comes from displacement field

- DKT Dhatt 1968
- DKT Batoz 1980
- DKQ Batoz 1982
- MKQ12 2017




DK (Discrete Kirchhoff) finite elements

@ Thick plate finite element : Including shear deformation 6; = ~, + %

Vx l_

\— The deformation of the initial normal

e normal to the mid-surface plane

The initial normal ———
x

@ Independent discretization of the displacement and the rotation field :
w=73Nwi 0c=3Nib, 0y =73 N,

@ Finite element with 3 degrees of freedom per node :

w1 w1 wq
9" 1 07‘1 9):4
0y, 1 64
% %
wo ) 3 wo o 3
6 X3 0 X3
X2 0 Xz 9
0)12 3 0}’2 3
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DK (Discrete Kirchhoff) finite elements

Bw

@ DK finite element : Kirchhoff hypotheses 7; = 0 = 05 = 5;

+— The deformation of the initial normal

e normal to the mid-surface plane

The initial normal ——
X

@ Independent discretization of the displacement and the rotation field :
w= ZiNiWi 0, = ZiN,'@xi Hy = ZiN,»Hyi such that HS, = %‘,

@ Finite element with 3 degrees of freedom per node :

w1 w1 W4
W1,x W1 ,x W4, x
Wi,y Wi,y W4,y
wo w3 wo w3
W2 x V3. W2 x V3.
Wa,y w3y Wy W3y
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Numerical implementation of the iterative algorithm

@ Interpolation of the displacement vector :

@ Interpolation the strain vector :

ex,x
LV’ = Oy,y =B'd
Ox,y + Oy,

@ Finite element formulation :

(/ E’Qﬁdﬂ)g:/ {—H’nMHNVﬂ} ds
Q r ’
M,
Kd=[- JpNiyds  J; Nds] bﬂ }
—=F N——
=b
E(V) :=Kd —Fb=0,telque V= (d, M,, V)

FA4V SN 47




Numerical implementation of the iterative algorithm

@ The fading regularization algorithm :

VAT = Argmin AT (V)
v ERSN

with ! = (47 an Zn) = (E: Q,xz Q’yv an Zn)
under the equality constraints £(V) = 0
@ The functional to be optimized :
]£+l (Y) = “Eu—‘d - ?d”iz(rd) + ”ﬂyg,x + ng,ylrd - Au‘d”iZ([‘d)
1Moy, = Ml + Waip, = Vallagr,yy + e (19 = W

+ ”Q,x - Q,xk”iZ(F) + ”Q,y - Q,yk”iZ(F) + ||Mn - Mﬁ”iZ(p) + ||£n - Eﬁ”?}(l"))

)

@ Resolution of the linear system :

[wﬁ* : vsT} [V:+11
7 +

£ o ||




Reconstructions on the inner boundary of an annular domain

(compatible data)
w Won
02 0.6
04
0.1
02
0
—  Analytic 0 — Analytic
*Reconstruction *Reconstruction
-0.1
0 01 02 03 04 05 0 01 02 03 04 05
curvilinear abscissa curvilinear abscissa
M, Vi

0.4

—  Analytic
*Reconstructios

0.08

A T; : unknowns
« 'y data

02
0.06

0.04

—— Analytic
*Reconstruction’ 02

0.02

0 01 02 03 04 05 0 01 02 03 04 05

curvilinear abscissa curvilinear abscissa



Reconstructions on the inner boundary of an annular domain

w
0.2
0.1
0 —— Analytic
o §=1%
8 =3%
-0.1 8§ =5%

(noisy data)

Won

06 A
o §
04 LS

02

nalytic

0 01 02 03 04 05

curvilinear abscissa

0 01 02 03 04

curvilinear abscissa

05

M, Vi
04 — Analytic
o 5§=1%
§=3%
02 5 =5%

0 01 02 03 04 05

curvilinear abscissa

0 01 02 03 04

curvilinear abscissa

05

A T; : unknowns
« 'y data



Reconstructions on the boundary of a square domain
(compatible data located on two opposite sides)

w Won
—_— Analylit{ —— Analytic
04 “+Reconstructiofi 1 *Reconstruction
o Data o Data

0, 1) (1, 1)
0 1 2 3 4
curvilinear abscissa curvilinear abscissa
M, Vi
005 ©,0 1,0
0 o Q=40 x 40
-0.05 AT : unknowns
0.1 + 'y : data
K -0.2
015 — Analytic —— Analytic
.02 +Reconstruction *Reconstruction
o Data @ Data
04
0 1 2 3 4 0 1 2 3 4
curvilinear abscissa curvilinear abscissa



Reconstructions on the boundary of a square domain
(noisy data located on two opposite sides)

w Won
—_— Analylit{ —— Analytic
04 “+Reconstructiofi *Reconstruction
o Data 1 o Data
5§ =3% 5§ =3%

02

05
0 R SO, b
0 t
-0.2
0 1 2 3 4 0 1 2 3 4
curvilinear abscissa curvilinear abscissa
M, Vi
01 02
(0,0) (1,0)
0 3 . Q = 40 x 40
- A T; : unknowns

-0.1 +« I'y : data

-0.2
—— Analytic —— Analytic
021 +Reconstruction *Reconstruction
o Datad = 3% o Datad = 3%
-04
0 1 2 3 4 0 1 2 3 4
curvilinear abscissa curvilinear abscissa



Reconstructions on the boundary of a square domain
(compatible data located on two adjacent sides)

w

—— Analytic
“+Reconstructiof
@ Data

0.4

Won

—— Analytic
*Reconstruction
1 o

(1, 1)

0, 1)

0 1 2 3 4
curvilinear abscissa curvilinear abscissa
M, Vi
0.2
0
M 0
-
0.1
-0.2
02y Analytic ——  Analytic
*Reconstruction *Reconstruction
o Data - @ Data
03 0.4
0 1 2 3 4 0 1 2 3 4
curvilinear abscissa curvilinear abscissa

0o
Q =40 x 40
A T; : unknowns
« 'y : data

m(lyo)



Reconstructions on the boundary of a square domain
(noisy data located on two adjacent sides)

—— Analytic
“+Reconstructiof
o Data

5§ =3%

Won

)

—— Analytic
*Reconstruction
o Data

5§ =3%

05
0, 1) (1, 1)
0 R
0 1 2 3 4 0 1 2 3 4
curvilinear abscissa curvilinear abscissa
M, Va
0.2 EEEEEEEEEEEEEEE
(0,0) (1,0)
0 Q =40 x 40
A T; : unknowns
-0.2 + Iy : data
—— Analytic —— Analytic H
#Reconstruction -0.4 #Reconstruction &
o Datad = 3% o Datad = 3%
0 1 2 3 4 0 1 2 3 4
curvilinear abscissa curvilinear abscissa



9 Plate finite element for second order Cauchy problem
@ Cauchy problem associated with the Laplace equation
@ Adaptation of the finite element of Melosh for the Laplacian
@ Numerical results



The Cauchy problem associated with the Laplace equation

@ The Cauchy problem associated with the Laplace equation

Au=0 inQ
M:¢d onl"d

U, =g only



The Cauchy problem associated with the Laplace equation

@ The Cauchy problem associated with the Laplace equation

Au=0 inQ
u=¢q only

Un =g only
@ Results obtained using the method of fundamental solutions:

u U,

2 ; 2
Analytic Analytic
* Reconstruction * Reconstruction
o Data o Data
15 5 =3% 1 5§ =3%
1l 0
05 .
0 1 2 3 4 0 1 2 3 4

curvilinear abscissa curvilinear abscissa



The Cauchy problem associated with the Laplace equation

@ The Cauchy problem associated with the Laplace equation

Au=0 inQ
u=¢q only

Un =g only

@ Results obtained by the finite element method:

* Reconstruction
Analytic x,
2 o Data

15

* Reconstruction

Analytic
o Data
5 =3%
0.5 -
0 1 2 3 4
curvilinear abscissa curvilinear abscissa



The Cauchy problem associated with the Laplace equation

@ The Cauchy problem associated with the Laplace equation

Au=0 inQ
M:¢d onl"d

U, =g only

@ Results obtained by plate finite elements (DK):

w Won

Analytic

Analytic
0.4 * Reconstruction * Reconstruction
o Data 1 o Data

5§ =3% 5§ =3%

0.2
0.5
0
0
-0.2
0 1 2 3 4 0 1 2 3 4

curvilinear abscissa curvilinear abscissa



Adaptation of Melosh finite element for the Laplacian

@ Cubic interpolation for displacement

U =ay + anx + azy + aax’ + asxy + agy’ + anx’ + agx’y

+ 0@0’2 + Otloy3 +anx’y + 0¢12x)’3
u =Pa

@ The degrees of freedom vector can be derived as

W= o + ooxi + asyi + aax + ..
(a") + asxi +
— — )i = & Qs5X;
d= By 3 5
)
—(3—2)i=—az—as)’i+-»-

d=Ca=a=C""d
@ The vector of interpolation functions

u=Pa=PC 'd=Nd
——
N

@ Finite element formulation associated with Laplace’s equation
7]
/ YuVvdQ :/ —uvdo, Vv € Hé(Q)
Q r On

(/QVN’VNdQ)g: (/FN’N,,,da)g

Kd = Fd



New regularization strategy
@ The fading regularization algorithm :
Letc > 0and U° € H(I),
Find UH! = (At WA WA € H(D) tel que
JELUAD) < SNV, WV = (v, vy) € HD), VK> 0,
ou ]§+1(V) = ||V|I‘d - ¢d”§11(1"d) + ||(”xV,x|I‘d + ”yV,y|I‘d) - /‘d”iz(rd)
+ IV - Vk”%{(r)

@ The discrete fading regularization algorithm :

Argmin JAT1(U)
u ER3N

suchas (K —F)U =0

where
T =Y, = Sy + 10V, 1Y 0 = 2
+e(IV = Ullagry + IV = Uiz + 1V, = Ullizqry )
vV =(V,V,,V )eRN



Reconstructions on the boundary of a square domain
(data located on two adjacent sides)

u Un
2 ) 2
—— Analytic Analytic
*Reconstruction * Reconstruction
o Data o Data
15 5 =0% 1 5§ =0%

oy an

05 -1
0 1 2 3 4 0 1 2 3 4
curvilinear abscissa curvilinear abscissa
(0,0) (1,0)
Q =40 x 40
A T; : unknowns
+ 'y : data



Reconstructions on the boundary of a square domain
(data located on two adjacent sides)

15

05 -1
0 1 2 3 4 1 2 3 4
curvilinear abscissa curvilinear abscissa
u U,n
2 . 2 i
Analyuc. — Analytic =
*Reconstruction * Reconstruction (0, 0)

—— Analytic
*Reconstruction
o Data

5 =0%

Un

B

Analytic

* Reconstruction
o Data

5§ =0%

(1, 1)

0, 1)

o Datad = 3%

o Dataé = 3%

0 1 2 3 4

curvilinear abscissa

1 2 3 4

curvilinear abscissa

(1,0)
Q =40 x 40
A T; : unknowns
« 'y : data



Reconstructions on the boundary of a square domain
(data located on two adjacent sides)

15

Analytic

+ Reconstruction
o Data

5§ =5%

Un

Analytic

* Reconstruction
o Data

6§ =5%

(1, 1)

0, 1)

0 1 2 3 4

curvilinear abscissa

curvilinear abscissa

(0,0)
Q =40 x 40
A T; : unknowns
« 'y : data

(1,0)



Reconstructions on the boundary of a square domain

(data located on two adjacent sides)

u Un
2 . 2
Analytic Analytic
+ Reconstruction + Reconstruction
o Data o Data
15 5§ =5% 1 6§ =5%
1 0 1) (.1
05 =
0 1 2 3 4 1 2 3 4
curvilinear abscissa curvilinear abscissa
u U,n
2 ; 2 i
Analytic —— Analytic i
*Reconstruction * Reconstruction (0,0) (1,0)
Données § = 10 @Données § = 10%
15 1 Q =40 x 40
A T; : unknowns
+ 'y : data
1 07} ‘
05 1
0 1 2 3 4 1 2 3 4
curvilinear abscissa curvilinear abscissa



© Conclusion and Outlooks



Conclusion and Outlooks

@ The fading regularization method :
- converges to a solution of the equilibrium equation
- robust (stable) towards noise

- able to denoise data

@ Numeric implementation of the fading regularization algorithm using MFS,
FEM and Discrete Kirchhoff finite elements

@ Reconstruction of the boundary conditions of the biharmonic Cauchy problem
and of the Cauchy problem in thin plate theory for smooth and non-smooth
domains

@ Outlooks :

o From a numerical point of view
- Use of MFS for the Cauchy problem in thin plate theory

- Use of other types of plate finite elements that ensure C! continuity (idea :
adding the cross derivative as nodal parameter (Bogner or Bazeley elements))
o Related to mechanics
- Data completion problems in thin plate theory (identification of fields and/or
boundary conditions, identification of defects, etc...)

- Use of experimental and real data
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Data completion problem using interior measurements

Au=0
U= g

0, 1) :
0..D 117
Vx € Q :
Vx € Qq .
'.‘A o
(0,0)
Q
[ Qg : data

[J €2; : unknowns

® source points

L
P



Data completion problem using interior measurements by the MFS

©0,1) +*° <, (1L,
b L
Au=0 Vx € Q . :
u= ¢y Vx € Qy . ."
“0‘ A 8 ,"
0,0 teeiaens =T o)
M . . —
u(x) ~ uM(a,b,y;x) = 71 (x,¥) + biZa(x,¥), x€Q 3)

=1



Data completion problem using interior measurements by the MFS

*
L
.
.

[+

Au=0 Vx € Q
u= ¢y Vx € Q4
0,00 Tteeaaancs ’ (1,0)
M . .
M(X) ~ uM(av bvzu X) = Zajgl (val) +bjy2(xvy])7 X € Q (3)

d M A A
un(X) = a—:(a, by,mx) =Y @' i(x,¥;n) + b FH(x,¥in), xe€T,
j=1

M
V(X) ~ Au(aa b7 X; 3) - Z bjg2 (Kv y/)7 X € F7
J=1

ov M .
va®) & o (a by mx) =3 bgh(xy), xeT.

j=1

(C))



Data completion problem using interior measurements by the MFS

0, 1) ." <, (1,
.o D c “‘
A’u=0 Vx € Q
u—= ¢d Vx € Qd . o
".‘A 75“..
(0, 0) N Traaaan® - (1,0)

Given ¢ > 0 and u® € H(Q),
Find **' € H(Q) suchas:
JEWH) < JEw), vw e H(Q) 3

Jé(w) = wig, — ‘Pd”%](gd) + cllw — uk”%I(Q)



Reconstructions of the solution u inside a square domain by the MFS
from partial interior noisy data measurements (6 = 3%)
Pd uq

03 , (0,1)."" e (1, 1)
02 o c

ot 0.05

! A B‘

. ' ©0) e <)
o7 : Q =30 x 30

0Qy =15 x 15: data
[J €; : unknowns

® source points

M =38andd =5

0 02 04 [ 08 1




Reconstructions of the boundary conditions of a square domain by the
MFS from interior noisy data measurements (6 = 3%)

ur Un
*Numerical
—Analytical 15
05
1
05
0
ok o JRSTLLLELTY " )
Numeric ’ .'.p c.'. '
-05 -05 —Analytic .
0 1 2 3 4 0 1 2 3 4
r I
VIr Von g
*Numerical 2 OA, ” .B‘
2 —Analytical (0, 0) TR : (1,0)
1 Q =30 x 30
15 0Qy =15 x 15: data
1 0 [J €; : unknowns
® source points
05 -1 “Numerical M=8andd =35
—Analytical
0 1 2 3 4 0 1 2 3 4
r r



Reconstructions of the boundary conditions of a square domain by the
MFS from interior exact data measurements

ur Un
*Numerical
—Analytical 15
05
1
05
0
0 0, 1) et Loa
“Numerical ’ ,'.D A '
-05 -05 —Analytic . -
0 1 2 3 4 0 1 2 3 4 ieesssiss :
r I
vir Vo T
. A B 5"
*Numerical 2 ., gt
2 —Analytical (0, 0) TR : (1,0)
1 Q =30 x 30
15 0Qy =15 x 15: data
1 0 [J €; : unknowns
® source points
05 -1 *“Numerical M=8andd =35
—Analytical
0 1 2 3 4 0 1 2 3 4
r r



Theorem (Théoréme de Holmgren — unicité du prolongement harmonique )

Soit u € H? une solution du probleme P(u) = 0 oit les coefficients de P sont
analytiques et u = 0 sur une courbe I non-caractéristique de classe C'.
Alors u est identiquement nulle dans un voisinage de chaque point de T.

Le théoreme de Holmgren s’applique en particulier aux opérateurs
elliptiques puisqu’ils n’admettent pas de courbes caractéristiques.




	blackGeneral context
	blackCauchy problem in thin plate theory
	blackPlate finite element for second order Cauchy problem
	blackConclusion and Outlooks
	Appendix

