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Scattering by an Inhomogeneous Media

k := ω/c0 > 0 is the wave number

(real) refractive index
√
n := c0/c(x)

n ∈ L∞(R3) s.th. Supp(n − 1) = D

∂D is Lipschitz

The incident field v satisfies the Helmholtz equation

∆ui + k2ui = 0 in R3 \ O
O set of zero measure in the exterior of D: examples ui (x) = e ikx·ŷ or

ui (x) = Φ(x , y) := e ik|x−y|

|x−y |

The total field U = u + ui satisfies

∆U + k2n(x)U = 0 in R3

The scattered field u satisfies

lim
r→∞

r

(
∂u

∂r
− iku

)
= 0 Sommerfeld radiation condition



Scattering by an Inhomogeneous Media

For the given incident field ui , the scattered field satisfies

∆u + k2nu = k2(1− n)ui in R3 + SRC

or ∆u + k2u = k2(1− n)(ui + u)

Note Only ui |D ∈ L2(D) matters. Let v := ui |D and in general
v ∈

{
L2(D) distributional solution to ∆v + k2v = 0

}
Lippmann-Schwinger equation

u = k2Tn,k(u + v)

where

(Tn,kθ) (x) =

∫
D

(n(y)− 1)θ(y)
e ik|x−y |

4π|x − y |
dy x ∈ R3



Scattering by an Inhomogeneous Media

Total field u + v in D solves
[
I− k2Tn,k

]
(u + v) = v

Tn,k : L2(D) → L2(D) is compact.

Fredholm alternative applies to
[
I− k2Tn,k

]
, i.e. injectivity implies

bounded invertibility

The norm Tn,k : L2(D) → L2(D) is bounded independently of k.

By Rellich’s Lemma
[
I− k2Tn,k

]
is injective for ℑ(k) ≥ 0

In particular for ℑ(k) ≥ 0[
I− k2Tn,k

]−1
: v 7→ (u + v)

v ∈
{
L2(D) distributional solution to ∆v + k2v = 0

}



Scattering poles

Recall
[
I− k2Tn,k

]
: C → L(L2(D)).

Analytic Fredhom Theory implies the kernel of
[
I− k2Tn,k

]
may be

nontrivial for a possibly discrete set of k ∈ C with ℑ(k) < 0 having
no finite accumulation point.

Therefore
[
I− k2Tn,k

]−1
is meromorphic in k ∈ C, and its poles in

ℑ(k) < 0 are the so-called scattering poles or resonances.

At a scattering pole k ∈ C, ℑ(k) < 0 there exists non-zero solution to
the homogeneous scattering problem, or in other words there is

non-zero scattered field u ̸= 0 with zero incident field ui = 0

Scattering poles constitute a fundamental part of scattering theory.

S. Dyatlov - M. Zworski (2019), Mathematical Theory of Scattering Resonances, AMS.



Non-scattering k and Transmission Eigenvalues

If k ∈ C is such that the kernel of I− k2Tn,k is trivial then[
I− k2Tn,k

]−1
: v 7→ (u + v) in L2(D)

v ∈
{
L2(D) distributional solution to ∆v + k2v = 0

}
Then u defined by

u(x) =

∫
D

(n(y)− 1)
[
(I− k2Tn,k)

−1v
]
(y)

e ik|x−y |

4π|x − y |
dy x ∈ R3

is the unique u ∈ H2
loc(R3) (radiating for ℑ(k) ≥ 0) solution of

∆u + k2nu = k2(1− n)v in R3

k is a non-scattering wave number if u = 0 in R3 \ D for v := ui |D
k is a transmission eigenvalue if u = 0 in R3 \D for any v as above.



Non-scattering k and Transmission Eigenvalues

For the inhomogeneity (n,D), u = 0 in R3 \ D implies that there is a
compactly supported distributional solution u

∆u + k2nu = k2(1− n)v in R3

u ≡ 0 in R3 \ D.

corresponding to v such that

if ∆v + k2v = 0 in R3 (or open Ω ⊃ D) then k is a non-scattering
wave number: at this wave number the incident field v is not
scattered by this inhomogeneity.

If ∆v + k2v = 0 in D then k is a transmission eigenvalue.

Non-scattering wave numbers form a subset of of transmission
eigenvalues.

Physically only real non-scattering wave numbers k > 0 are of relevance.



Spherical Geometry
D := B1(0), n(r), incident field v = jℓ(k |x |)Yℓ(x̂)

us(x) :=
C (k ; n, ℓ)

W (k ; n, ℓ)
h
(1)
ℓ (k |x |)Yℓ(x̂) |x | ≥ 1

C (k ; n, ℓ) = Det

(
yℓ(1; k , n) jℓ(k)
y ′
ℓ(1; k , n) kj ′ℓ(k)

)

W (k ; n, ℓ) = Det

(
yℓ(1; k , n) h

(1)
ℓ (k)

y ′
ℓ(1; k , n) kh

(1)′

ℓ (k)

)
with yℓ(r ; k , n) the solution (regular at r = 0) of

y ′′ +
2

r
+

(
k2n(r)− ℓ(ℓ+ 1)

r2

)
y = 0.

k for which C (k ; n, ℓ) = 0 are non-scattering wave numbers with
v = jℓ(k |x |)Yℓ(x̂) as incident wave.

k for which W (k ; n, ℓ) = 0 are scattering poles.



Transmission Eigenvalues for Spherical Geometry

If k is such that C (k ; n, ℓ) = 0, i.e. a non-scattering wave number then
v = jℓ(k|x |)Yℓ(x̂) and w = yℓ(|x |; k , n)Yℓ(x̂) solve

The Transmission Eigenvalue Problem

∆v + k2v = 0 and ∆w + k2nw = 0 |x | < 1

v = w and
∂v

∂|x |
=

∂w

∂|x |
|x | = 1

For spherically symmetric media the set of non-scattering wave numbers
and the set of transmission eigenvalues coincide

There exists infinitely many real and infinitely many complex zeros of
C (k; n, ℓ) = 0 with ∞ as the only accumulation point Colton-Leung (2017).
Thus the transmission eigenvalue problem is non-selfadjoint.



Non-scattering results for spherical media

If n(r) ∈ C 2[0, 1] for each incident wave of the form
v = jℓ(k |x |)Yℓ(x̂) there exists infinitely many k > 0 accumulating
only at +∞ for which B1(0), n(r) renders this v non-scattering.

Non-scattering incident waves for a ball are Herglotz wave function
(superposition of plane waves)

v(x) :=

∫
S
g(ŷ)e ikx·ŷ , ŷ = y/|y |

D. Colton and R. Kress (2019), Inverse Acoustic and Electromagnetic Scattering Theory, 4th
Edition, Springer.

In R2 and n ̸= 1 constant, it is shown that if the disk is perturbed
to an ellipse with arbitrary small eccentricity, there are at most
finitely many k > 0 for which a Herglotz wave function with a fixed,
smooth density can be non-scattering.

M. Vogelius and J. Xiao (2021), Finiteness results concerning non-scattering wave numbers for

incident plane and Herglotz waves, SIAM J. Math Analysis.



General Media

Non-scattering Configuration

Find u ∈ H2
0 (D) (H2 with compact support D)

∆u + k2nu = k2(1− n)v in D

with a nonzero v physical incident wave which satisfies

∆v + k2v = 0 in R3 \ O

for Lipschitz boundary u ∈ H2
0 (D) means u = 0,

∂u

∂ν
= 0 on ∂D

If k is non-scattering wave number then u and v |D satisfy

Transmission Eigenvalue Problem

There are nonzero u ∈ H2
0 (D) and v ∈ L2(D) such that

∆u + k2nu = k2(1− n)v and ∆v + k2v = 0 in D



The Transmission Eigenvalue Problem

Set U = u + v then nonzero v ∈ L2(D) and U ∈ L2(D) satisfy

∆v + k2v = 0 in D

∆U + k2nU = 0 in D

U = v on ∂D
∂U

∂ν
=

∂v

∂ν
on ∂D

TE can be also viewed as values of k ∈ C for which the operator

Nk,n −Nk,1 has non-trivial kernel

where Nτ,q : f 7→ ∂φ

∂ν
(the Dirichlet-to-Neuman operator) with φ

∆φ+ k2qφ = 0 in D φ = f on ∂D



The State of the Art of TE problem

The transmission eigenvalue problem is non-selfadjoint.

Main Assumption n − 1 is one sign in a neighborhood of ∂D

If n ∈ L∞(D), and ∂D Lipschitz, transmission eigenvalues are
discrete with ∞ as the only possible accumulation point.

Sylvester (2012), Kirsch (2014)

If n ∈ C 1 near ∂D smooth, completeness of generalized
eigenfunctions and Weyl’s law for counting function are known.

Robianno (2013), H.M. Nguyen-J. Fornerod (2022)

If n ∈ C∞(D) and ∂D is C∞, transmission eigenvalues lie in a strip
around the real axis.

Vodev (2018)

F. Cakoni, D. Colton and H. Haddar (2016), Inverse Scattering Theory and Transmission Eigenvalues,
CBMS-NSF, SIAM Publication.



Existence of Real Transmission Eigenvalues

Important to our discussion is whether real transmission eigenvalues exist.

Theorem (Cakoni-Gintides-Haddar)

Assume n ∈ L∞(D), ∂D Lipschitz, and n − 1 is one sign uniformly in D.

There exists an infinite sequence of real transmission eigenvalues
{kj}j∈N accumulating at +∞.

If n > 1 than k1 >
λ1(D)

supDn
, and if 0 < n < 1 than k1 > λ1(D)

λ1(D) is the smallest Dirichlet eigenvalue of −∆ in D

In this case, eliminating v we get: find u ∈ H2(D) such that

(∆ + k2)
1

n − 1
(∆ + k2n)u = 0 in D

u = 0 and
∂u

∂ν
= 0 on ∂D

F. Cakoni, D. Gintides and H. Haddar (2010), The existence of infinite discrete set of transmission

eigenvalues, SIAJ. Math Anal.



TE and Non-Scattering

sup(1− n) = D

k > 0 is a transmission eigenvalue

if there are nonzero v and u ∈ H2
0 (D) such that

∆v + k2v = 0 in D

∆u + k2nu = k2(1− n)v in D

u = 0 and
∂u

∂ν
= 0 on ∂D

k > 0 is a non-scattering wave number

if there are nonzero v and u ∈ H2
0 (D) such that

∆v + k2v = 0 in Ω ⊃ D

∆u + k2nu = k2(1− n)v in D

u = 0 and
∂u

∂ν
= 0 on ∂D



Non-existence of Non-scattering Wave Numbers

Negative result in this context means that non-scattering configuration does NOT exist

First negative result obtained for corners Bl̊asten-Päivärinta-Sylvester (2013)

If D contains a boundary point x0 ∈ ∂D that is a corner in R2, or a
vertex, conical corner, edge point in R3, and n(x0) ̸= 1 and n ∈ C 1,α

locally in Bϵ(x0), then every incident wave is scattered by D, n.

No assumption on the incident field v is needed!

This negative result implies that scattering data
due to one single incident plane wave uniquely
determines the support of convex polyhedron in-
homogeneities.
Hu-Salo-Vesalainen (2016), Elschner-Hu (2017), (2018)

Bl̊asten (2018), Cakoni-Xiao (2019)



Two Techniques for Corner Scattering
Based on CGO (rapidly decaying) solutions of the Helmholtz
equation.

Bl̊asten-Päivärinta-Sylvester (2013), Päivärinta-Sylvester-Vesalainen (2017), Bl̊asten

(2018), Cakoni-Xiao (2019), Xiao (2021)

CGO solution is used as test function w in∫
Cϵ

(1− n)vφ dx =

∫
Kϵ

φ
∂u

∂ν
− u

∂φ

∂ν
ds

to control the boundary terms, where u and v are transmission
eigenfunctions.

Based on singularity analysis of the transmission
eigenfunctions in a neighborhood of the
boundary singularity.

Elschner-Hu (2017), (2018)

In both methods a contradiction is achieved if v is assumed to solve the

Helmholtz equation in Bϵ(x0).



Singularities Scatter

For general domains D this question is only recently studied.

In R2 and constant n ̸= 1, C 2,α strictly convex inhomogeneities
scatter plane waves, except for at most finitely many wave numbers.

M. Vogelius and J. Xiao (2021), Finiteness results concerning non-scattering wave numbers for

incident plane and Herglotz waves, SIAM J. Math Analysis.

If ∂D contains a smooth portion of high curvature, (D, n) scatter all
waves with sufficiently large modulus near this portion.

E. Bl̊asten and H. Liu (2021),Scattering by curvatures, radiationless sources, transmission

eigenfunctions and inverse scattering problems, SIAM Math Analysis.

Using free boundary methods

F. Cakoni and . Vogelius (2021), Singularities almost always scatter: Regularity results for

non-scattering inhomogeneities, Communications in Pure and Applied Math (to appear).

M. Salo and H. Shahgholian (2021), Free boundary methods and non-scattering phenomena,

Research in the Mathematical Sciences.



Free Boundary Methods

Free boundary methods apply to problems

∆w = f χ{w ̸=0} in Br (z)

z ∈ ∂ {w = |∇w | = 0}

where f is Lipshitz and w ≥ 0.

For our scattering problem, z ∈ ∂D reachable from

the unbounded component of Rd \ D

f := −k2w + k2(1− n)ℜ(v)

with w := ℜ(u) real part of the scattered field



Almost All Singularities Scatter

Let ∂D be Lipschitz, n ∈ L∞(D). The incident field v is scattered if

∆w + k2nw = k2(1− n)ℜ(v) in D ∩ Br (z)

w =
∂w

∂ν
= 0 on ∂D ∩ Br (z)

for some z ∈ ∂D with (1− n(z))ℜ(v(z)) ̸= 0

does NOT hold

incident field v is real analytic as solution of ∆v + k2v = 0 in Ω ⊃ D

(Cakoni-Vogelius 2021)

The incident field v is scattered if there is z ∈ ∂D where n(z) ̸= 1 and
v(z) ̸= 0 such that

1 n and v are real analytic around z and ∂D ∩ Br (z) is not analytic
for any r > 0.

2 n and v in Cm+µ(D ∩ Br (z)) for m ≥ 1, 0 < µ < 1 and ∂D ∪ Br (z)
is not in Cm+1+µ for any r > 0.



Remarks

Remark 1:The above results can be interpreted as statement of regularity
up to the boundary of the transmission eigenfunction v ∈ L2(D) of

∆u + nu = k2(1− n)v and ∆v + k2v = 0 in D.

For example, if n is real analytic in a neighborhood of z ∈ ∂D and
∂D ∩ Br (z) is not analytic for any r > 0, then v can not be real analytic
in any neighborhood of z , unless v(z) = 0.

Remark 2: The non-vanishing condition v(z) ̸= 0 on incident waves
which is essential to free boundary methods is restrictive.

It is satisfied:

for incident plane waves v(x) = e ikx·ŷ

for some superposition of plane waves (Herglotz functions)
v(x) :=

∫
S g(ŷ)e

ikx·ŷdŷ . k is not a Dirichlet eigenvalue for −∆ in D

Open Problem: For given n,D what is the intersection of the sets of
Dirichlet and real transmission eigenvalues?



Ideas of Proof
Higher regularity is provided by the celebrated paper by Kinderlehrer and
Niremberg (1977) which roughly state that if ∂D ∩ Br (0) is C

1 and u is
C 2 solution of the elliptic problem z → 0 ∈ ∂D

F (x , u,Du,D2u) = 0, F (0, 0, · · · ) ̸= 0 in D∩Br (0) F is C 1-real valued

u =
∂u

∂ν
= 0 on ∂D ∩ Br (0)

the boundary must one Hölder order higher regular than F .

To achieve starting regularity we use Caffarelli’s result for F : ∆u = f

Theorem (Caffarelli - 1977)

Let ∂D ∩ Br (0) be Lipschitz, f has Lipschitz
extension f ∗ in a neighborhood of D ∩ Br (0),
s.th f ∗ ≥ α > 0, and u is C 1,1 and u ≥ 0.

Then for some r ′ < r , ∂D ∩ Br ′(0) is C
1 and

u ∈ C 2(D ∩ Br ′(0)).



Ideas of Proof

For our problem f := −k2nw + k2(1− n)ℜ(v), where w is the real part
of the scattered field and v is the incident field.

We first prove that w ∈ C 1,1.

Then f ∈ C 1,1(D ∩ Br (z)) with non-degeneracy condition
[(1− n)ℜ(v)] (z) ̸= 0 implies one sign condition on w

Our approach is based on

S. Williams (1981), Analyticity of the boundary for Lipschitz domains without the Pompeiu property,

Indiana Univ. Math. J.

More optimal starting regularity assumptions on ∂D are used in

M. Salo and H. Shahgholian (2021), Free boundary methods and non-scattering phenomena, Res.

Math. Sci.

where based on the results in

J. Andersson, E. Lindgren and H. Shahgholian (2021), Optimal regularity for the non-sign obstacle

problem, CMAP (2012)

it is proven that assuming D ∩ Br (z) is solid domain, then either free
boundary D ∩ Br (z) is smooth or is thin at z .



Historical Connections



Connection to Schiffer’s Conjecture

Non-scattering: Given v satisfying ∆v + k2v = 0 in Rd , the problem

∆u + k2nu = k2(1− n)v in D

u = 0,
∂u

∂ν
= 0 on ∂D

has no solution for any k > 0.

D has Schiffer’s property if the problem

∆w + λw = 1 in D

w = 0,
∂w

∂ν
= 0 on ∂D

has no solution for any λ.

Conjecture: The only simply connected domain in Rd that fails to have
Schiffer’s property are balls. Williams (1981), Berenstein-Yang (1987), Vogelius (1994)

Schiffer’s property is related to Pompeiu property (integral geometry problem)



Remarks on the Near Field Scattering Operator

Consider single layer potential incident waves (superposition of point
sources Φ(·, y))

vg (x) :=

∫
∂Ω

g(y)Φ(x , y) dsy

where ∂Ω is the boundary of an open region Ω ⊃ D.

with the corresponding scattered field ug solving

∆ug + k2nug = k2(1− n)vg in R3, with SRC

The near field incoming-to-outgoing scattering operator is defined by

Nk : g ∈ L2(∂Ω) 7→ ug ∈ L2(∂Ω)



Remarks on the Near Field Scattering Operator

Theorem

The near field scattering operator Nk : L2(∂Ω) → L2(∂Ω) corresponding
to a given inhomogeneity D, n at a wave number k is

not injective and does not have dense range

if and only if there exist a nontrivial single layer potential incident wave

vg (x) :=

∫
∂Ω

g(y)Φ(x , y) dsy

that is not scattered by D, n.



Relative Scattering Operator and Special Sets of k

Transmission Eigenvalues: related to the kernel

v ∈ {L2(D) : ∆v + k2v = 0} 7→ u|∂Ω where u solves

∆u + k2nu = k2(1− n)v in R3 SRC

Non-scattering Frequencies: related to the kernel

Nk : g 7→ ug |∂Ω

Scattering Poles: they are the poles of the meromorphic valued
operator k → Nk ∈ L(L2(∂Ω))

It is possible to characterize the scattering poles as ’non-scattering
frequencies” for an appropriate interior scattering problem and
outgoing incident field.

F. Cakoni, D. Colton and H. Haddar (2020), A duality between scattering poles and

transmission eigenvalues in scattering theory, Proc. R. Soc. A.



Dual Characterization of the Scattering Poles

Given n and D, k is a scattering pole if and only if the homogeneous
problem

∆w + k2nw = 0 in R3

w = SLk
∂D(∂w/∂ν)−DLk

∂D(w) in R3 \ D

has non-trivial solution w ∈ H2
loc(R3)

For any k ∈ C consider incident fields w ∈ H2
loc(R3 \ D) that satisfies

∆w + k2w = 0 in R3 \ D

w = SLk
∂D(∂w/∂ν)−DLk

∂D(w) in R3 \ D

Such incident field are e.g. w := Φ(·, z) the fundamental solution of the
Helmholtz equation, or superposition w :=

∫
C Φ(·, z)φ(z)dz

for an analytic curve C ⊂ D.

SLk
∂D and DLk

∂D are the single and double layer boundary potentials.



A dual framework
Then, assuming k is not a transmission eigenvalue, consider the interior
scattering problem: find ”total field” u ∈ L2(D) and ”scattered field”
v ∈ L2(D) with u − v ∈ H2(D) such that

∆u + k2nu = 0 and ∆v + k2v = 0 in D

u − v = w and
∂u

∂ν
− ∂v

∂ν
=

∂w

∂ν
on ∂D

(Dual Framework)

k ∈ C is a scattering pole if and only if the kernel of the mapping

w 7→ vw |C

is non-trivial (dual to transmission eigenvalue characterization).

Mapping φ 7→ vφ where vφ satisfies the above scattering problem
with w :=

∫
C Φ(·, z)φ(z)dz replaces the near field operator.

Open Problem: What is the intersection of the set of scattering poles

with the set of complex transmission eigenvalues.
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