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Integral equations — Direct & inverse problems

Direct & inverse scattering problems

» An incident wave «' is scattered by an obstacle, total field u = ub 4+ u®
» Direct problem = scatterer known — determine the scattered field
» Inverse problem = scattered field known — determine the scatterer
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Figure: Acoustic scattering of a plane wave by a sphere and a cone-sphere in 3D.
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Integral equations — Direct & inverse problems

Direct & inverse scattering problems

» An incident wave u' is scattered by an obstacle, total field v = u' 4 «”

» Direct problem = scatterer known — determine the scattered field
» Inverse problem = scattered field known — determine the scatterer

Applications

» EDF applications
» Defect and crack detection in materials
» Dike inspection
» Eddy-current imaging in pipes
» Steam generator monitoring
» Military applications
» Radar and sonar technology
» Underwater mine detection
» Other applications
» Medical imaging
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Integral equations — Layer potentials

Background

» Time-harmonic acoustic waves solutions to 3D Helmholtz Au + k?u = 0
» May be rewritten as a 2D integral equation on the scatterer's boundary

> Applies to Maxwell’s eqns. (electromagnetic waves) and elasticity (elastic waves)

Single-layer potential

> The radiating solution to Au + k*u = 0 in R® \ Q with u = up on T’ = 99,
for some bounded €2 whose complement is connected, can be obtained via

/ G, )¢(y)dl(y) = up(z), @ el

» G is the Green's function of the Helmholtz equation in 3D,

1 etFlz—yl

> Once the equation is solved for ¢, unique if £” is not an e-value of —A in O,
the solution u may be represented by the LHS for all € R®\
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Integral equations — Numerical methods

Integral equation

G(z,y)p(y)dl(y) =up(x), =€l

Nystrém methods (Barnett, Bruno, Bonnet, Faria, Greengard, Rokhlin, etc.)

» Seek the numerical solution by replacing the f with a weighted sum
n
> wiG(ws,y)e(y;) =up(®;), 1<j<n
i=1

» High-order but restricted in terms of geometry

Boundary element methods (Betcke, Lenoir, Nédélec, Sauter, Schwab, etc.)

» Based on a variational formulation of the integral equation

/ / G2, ¥)o ()’ (@)d0(y)dl(z) = / up(@)¢ (@)d0(@), Ve € H(D)

» Flexible with respect to geometry but often low-order
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Integral equations — Challenges

Integral equation

G(z,y)p(y)dl(y) = up(x), €l
T

Numerical challenges

» The resulting linear system Az = b is dense

» For large wavenumbers k, iterative methods are required (N 1 k)
» High-order schemes may be helpful in enlarging the interval of feasible k&

» These yield singular/near-singular integrals for which standard methods fail
» Singular — intrinsic to the integral equation formulation
» Near-singular — nearby objects (e.g., thin layers), resonant cavities

Goals

1. High-order method for enlarging the interval of feasible wavenumbers k

2. Robust with respect to geometry, e.g., handles corners & nearby objects
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Weakly singular integrals — Setup

Boundary element methods

//G(:v,y)so(y)so’(w)dF(y)dF(w):/UD(ﬂc)w/(w)dF(ﬂc), V' € H*(T)
rJr T

Singular integrals

» Compute weakly singular/near-singular integrals of the form

» 7 is a curved triangular element defined by F : T T of degree ¢
> (¢ is a basis function of degree p and o € R3 is a point on/close to T

as as
as

ai Qg as aj a4 a2

Figure: A quadratic element T and its mapping F.
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Weakly singular integrals — Cancel & subtract

A simple example

» Consider the following integral that is singular at the origin

o(z1,22)

|z[<1 4/ x3 + 3

I = d 1d$2

Singularity cancellation (Duffy, Hackbusch, Johnston, Sauter, Telles, etc.)

» Change of variables such that the Jacobian cancels the singularity

LR (pcosb, psinb) LR
o Jo P o Jo

Singularity subtraction (Aliabadi, Guiggiani, Hall, Jarvenpa3, etc.)

» Terms having the same asymptotic behavior at the singularity are subtracted

I:/ @(Il,mg) _ 80(070) d$1d$2+/ (p(oﬂo) dmldazg
wi<t | Va2 +23  /a?+ad lel<1 v/ + 23
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Weakly singular integrals — Continuation

Continuation approach (Cormack, Lenoir, Rosen, Salles, Vijayakumar)

> Suppose ¢ is homogeneous, i.e., p(Ax) = X" Tlp(x), then
P ¥ P

(z1,22) 1 o
LEILL2) grvdrs = —— | p(cosb, sin 0)do
0

T+2 le|=1 \/ 2% + 3 Far
A more complicated example

» Consider the following integral that is near-singular at the origin

I(h) = T
o<1 /2% + a3 + b

» Continuation approach still works and yields

27 “+oo
du
I(h =hr+2/ cos€,sin9 / ——df
(n) i N e

» How do we utilize the continuation approach on curved elements?

» Our method combines singularity subtraction with the continuation approach
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Weakly singular integrals — Method

I(zo) = dS(z), F:Tw—T

/ o(F~ (@)
T

|z — o]

» Step 1 — Mapping back to the reference element

> Step 2 — Locating the singularity via &9 = argmin|F(&) — xo|?

» Step 3 — Taylor expanding & subtracting

J(mo):/ATl(:@,h)dS(;@)Jr/A{Wﬂ Tl(i,h)}dS(:ﬁ)
T T

&) —xo|

» Steps 4 & 5 — Integrating 7" | with continuation & transplanted quadrature

3
|J(£0)&|2 + h2 — h
Lh:zpazigi/ . ds(&
1( ) ( 0) - Bﬁfaito |J(:1:o):13|2 ( )
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Weakly singular integrals — Step 1

‘ Goal » Mapping back I(xg) = fT “"(F_—l(w))dS(:c) = f? @I (@)X T3(#)] 59

lz—zo| [F(2)—zol

Map and Jacobian matrix

> A quadratic triangle 7 C R3 is defined by six points a; € R? and the map /" : =T

6
F(@) =) ¢;(@)a; €R®
j=1

» The 3 x 2 Jacobian matrix J is then defined by

J@)= | (@) | J2(&) | = | Fz, (&) Fm(:z)> € R3*?2
as as

a N as

ae as _ ae
ai ay4 as al a4 az

Figure: A quadratic element T and its mapping F.
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Weakly singular integrals — Step 2

| Goal » Locating the singularity via &9 = argmin|F(&) — o2

Cost function

» Given T and a point xo, find & such that F(£) is the closest point to g on T
> Minimize E(2) = |F(&) — xo|?, the output &g is such that
F(:i:o) — x

:IZQZF(i‘())—heh, h=|F(i‘0)—£L‘0|, ep = h

» We make the assumption that & << p (diameter of T')

Numerical optimization

» Compute closest point on the surface with Newton's method

Anew

&)™ = &0 + ap(®0), p(@o) = —H(2o) ' VE(&o)

as as

ai ag4 as aj a4 a2

Figure: Nearest singularity is computed with optimization. .



Weakly singular integrals — Step 3

‘ Goal » Taylor expanding & subtracting [ = fT_l + f {wR_l — T_1}

First-order Taylor series

> We want to calculate the asymptotic expansion of ¢(£)R™1 = ¢(&)/|F(&) — xo|

» First-order Taylor series in §& = | — &0
F(&) —xo = J(&0)(& — £0) + hep + O(622)

» Since |J(@0)(@ — @0)|” ~ p?02? and hO(627) ~ hpoi?, the latter may be neglected
» From the expansion of R2, we obtain that of wR_l

»(2) ~ (o)
|E(2) — 2ol /]J(20)(& — &0)|2 + h2

Higher-order expansions

» More Taylor terms—smoother 2D integrand for faster 2D quadrature, e.g.,

' & 23—7 e aj—1

h 1) 6

To@h) = — Yo __ BN, SRR
[17(20)62[2 + h2]2 2 = "[|J(£0)62[2 + h?]2
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Weakly singular integrals — Step 4

‘ Goal » Transform fT_l with the continuation approach

Continuation approach

» Transforms a 2D integral into a sum of 1D integrals along the edges of T= Zo,

/?ﬁ |J(wo>w|2+h2 Zs]/ |J<mo)m<)\2 "l o)

» When the origin is far from an edge (close to), integrand is analytic (but near-singular)

71(t)
Figure: The integrals are computed along the edges of T — Zo.
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Weakly singular integrals — Step 5

‘ Goal » Compute fT_l with transplanted Gauss quadrature

Gauss quadrature

» The integral on 71 is of the form

I(e fe(t)dt = —_— Zwkf ik
© / 9 / VEE i)
» Because of the singularities at t = ¢, slow convergence at the rate (1 + €)

Transplanted Gauss quadrature (Hale, Olver, Slevinsky, Trefethen, etc.)

» Pick conformal map ge such that ge(£1) = £1, e.g., ge(z) = esinh [arcsinh (%) z]

—2n

I(e) :/ ge( )fe(gé )dt Zwkge 173 fe(ge(tk>
- k=1

> Integrates f. exactly with a single quadrature point/weight
> Faster convergence (1 + w/[2log(1/€)]) ™2™ for f£ x g for any smooth g and integer £
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Numerical experiments — 2D near-singular integral

‘ Goal » Computing fT ‘i‘i(:gl for xg = F(0.2,0.4) + 10~%2

as = (0.6,0.7,0.5)

a; a4 a9 ay aq4 a2

@) = F(2e-01, 4e-01) + le-04z

1072
10714
s
3
2 10°
=
=
5}
-4
10784
—— T, regularization N-2
10-10 4 —>— Tj regularization
—6— T regularization

10° 10! 10% 10° 10* 10°
Quadrature size N

Figure: Error versus quadrature size.
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Numerical experiments — 2D singular integral

‘ Goal » Computing fT \ii(:gl for g = F(0.5,10~%)

as = (0.6,0.7,0.5)

a; a4 a9 ay aq4 a2

) = F(5e-01, 1le-04)

1072 4

L R NN R SCr
s N\& | U .
8 1064 el N
o
2
=
5}
-4 -

1075 4

+— T_, regularization
10-10 4 —— T regularization
—6— T regularization
T ] I |
10° 10! 102 10° 00 o

Quadrature size N

Figure: Error versus quadrature size.
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Numerical experiments — 2D singular integral
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1072 4
R e N M
sl sl T ]
5 ] ~
; 10
k=
=
& L5
10-5 4
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1004 T Ty regularization N2
—6— T regularization N3
T T T T
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Figure: Error versus quadrature size.
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Numerical experiments — 4D singular integral

| ol > compuin [, [ 4025

» We map the y-integral back to T and discretize it with N-point Gauss quadrature

Y(9) _dS(z)
I*//M—F( gy S @)S(=) N’N*Z“’"‘”y")/ o= F (o]

» There remain N integrals, which we compute with 7" | regularization using N points

102

Relative error

104
—— T, regularization

—¥— T, regularization
—6— T regularization

10° 10° 10 10°
Quadrature size M

Figure: Error versus quadrature size (M = N? is the total number of points).
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Numerical experiments — Helmholtz (setup)

| Goal » Solving 3D Helmholtz Au + k?u = 0 (exterior Dirichlet problem)

» Single-layer potential formulation yields the computation of integrals of the form

1 eik:|w—y| —i .
B E/ / |z — y| @i (Fy~ (4))dS(y)e; (Fy " (x))dS(x)
Te v Tyr

We map the y-integral back to T and discretize it with N-point Gauss quadrature

zk:|:z: For(9p)]
:—anwj () / T mao P @)es@)

v

v

We are left with the computations of N integrals of the form

tkle—xn| _ X =1 a3
/ u%(pzl(w))dg(x) +/ MdS(z).
Te |:l: - :l:n| Te |:l': - x"l

First integral discretized with N-point Gauss quadrature—convergence O(N ~1-5)

v

> Second one discretized with 7| regularization—convergence O(N 1)
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Numerical experiments — Helmholtz (unit sphere)

| Goal » Solving 3D Helmholtz Au + k*u = 0 (exterior Dirichlet problem)

Far-field error

> Find solution «° such that u = u* +u® = 0 on T for u’(r, ) = e*7°°s?
» Single-layer potential formulation of the integral equation S,¢} = —u,

» Solve for j, then evaluate uy at “infinity” — up® (far-field)

[ (@) — ui(@)] < e (BP0l pa ey + 10" | Loy )

z-axis 0

I

-1

a0 R
L.
Figu re: Acoustic scattering of a plane wave by a sphere in 3D.
19/25



Numerical experiments — Helmholtz (unit sphere)

| Goal » Solving 3D Helmholtz Au + k*u = 0 (exterior Dirichlet problem)
Far-field error
> Find solution u° such that u = u’ +u® = 0 on T for u’(r,§) = e*"°s?
» Single-layer potential formulation of the integral equation Sy p; = —uj,

» Solve for j, then evaluate uy at “infinity” — up® (far-field)

[u (@) — i @)] < ¢ (BT @ ooy + B0 | o))

10°

1072

10

Relative error (far-field pattern)

1078 +—
107! 100
Mesh size h

Figure: Error in far-field versus mesh size h (p = q = 2).
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Figure: Error in far-field versus mesh size h.
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Figure: Error in far-field versus mesh size h.
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Numerical experiments — Helmholtz (unit sphere)

| Goal » Solving 3D Helmholtz Au + k*u = 0 (exterior Dirichlet problem)
Far-field error

> Find solution u° such that u = u’ +u® = 0 on T for u’(r,§) = e*"°s?

» Single-layer potential formulation of the integral equation Sy p; = —uj,

» Solve for j, then evaluate uy at “infinity” — up® (far-field)
[u (@) — ui(@)] < e (BP0 | mpra oy + R2N0° Lo ()

k=81 (A\=025, f~1,372)
(0.1)
(1.1)
(1.2)
(2.2)

10°

= (pq
= (pg

)=
)=
)=
)=

w0-2] & g
— (p.q

Relative error (far-field)

108

102 107!
Mesh size h

100

Figure: Error in far-field versus mesh size h.

19/25



Numerical experiments — Helmholtz (unit sphere)
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Numerical experiments — Helmholtz (unit sphere)

| Goal » Solving 3D Helmholtz Au + k*u = 0 (exterior Dirichlet problem)
Far-field error

> Find solution u° such that u = u’ +u® = 0 on T for u’(r,§) = e*"°s?
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Figure: DoFs versus wavenunber k for target error € ~ 10~3: Goal #1 achieved.
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Numerical experiments — Helmholtz (cone-sphere)

| Goal » Solving 3D Helmholtz Au + k*u = 0 (exterior Dirichlet problem)

Far-field error

> Find solution «° such that u = u* +u® = 0 on T for u’(r, ) = e*7°°s?
» Single-layer potential formulation of the integral equation Sipn = —u,
» Solve for o}, then evaluate uy at “infinity” — up® (far-field)

[0 (@) — ui (@)] < e (B2l mperqry + A 0 22y

P
35

a

25

2

15

1

05

zaxis 0
05

:
&
.,
35 =1
4

4 3 2 2 3 4

Figure: Acoustic scattering of a plane wave by a cone-sphere in 3D.
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Numerical experiments — Helmholtz (cone-sphere)

| Goal » Solving 3D Helmholtz Au + k*u = 0 (exterior Dirichlet problem)
Far-field error

> Find solution «° such that u = u’ +u® = 0 on T for u’(r, ) = e*"°°s?

» Single-layer potential formulation of the integral equation Sy, = —uj,

» Solve for o}, then evaluate uy at “infinity” — up® (far-field)

[u (@) —ui ()] < ¢ (B2 10" lap+i ey + B 0" o)

k=27 (\=1, f ~343)
—— (p.q) = (L.1)
—— (p.q) = (2.2)

100

1072

104

Relative error (far-field)

10°¢

107

102 107! 10°
Mesh size h

Figure: Error in far-field versus mesh size h.
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Numerical experiments — Helmholtz (cone-sphere)

| Goal » Solving 3D Helmholtz Au + k*u = 0 (exterior Dirichlet problem)
Far-field error
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100

1072
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107

102 107!
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10°

Figure: Error in far-field versus mesh size h.
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Numerical experiments — Helmholtz (cone-sphere)

| Goal » Solving 3D Helmholtz Au + k*u = 0 (exterior Dirichlet problem)

Far-field error

> Find solution «° such that u = u’ +u® = 0 on T for u’(r, ) = e*"°°s?
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Figure: Error in far-field versus mesh size h.
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Numerical experiments — Helmholtz (cone-sphere)

| Goal » Solving 3D Helmholtz Au + k*u = 0 (exterior Dirichlet problem)

Far-field error

> Find solution «° such that u = u’ +u® = 0 on T for u’(r, ) = e*"°°s?
» Single-layer potential formulation of the integral equation Sy, = —uj,
» Solve for o}, then evaluate uy at “infinity” — up® (far-field)

[u (@) —ui ()] < ¢ (B2 10" lap+i ey + B 0" o)
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Figure: Error in far-field versus mesh size h.
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Numerical experiments — Helmholtz (cone-sphere)

| Goal » Solving 3D Helmholtz Au + k*u = 0 (exterior Dirichlet problem)
Far-field error
> Find solution «° such that u = u’ +u® = 0 on T for u’(r, ) = e*"°°s?
» Single-layer potential formulation of the integral equation Sy, = —uj,
» Solve for o}, then evaluate uy at “infinity” — up® (far-field)

[u (@) —ui ()] < ¢ (B2 10" lap+i ey + B 0" o)

10°
= (p.q) = (1,1)
= (p.q) =(2,2)

S

10*

Degrees of freedom

10°
10

Wavenumber k

Figure: DoFs versus wavenunber k for target error e ~ 1073: Goal #1 achieved.
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Numerical experiments — Helmholtz (cone-sphere)

| Goal » Solving 3D Helmholtz Au + k*u = 0 (exterior Dirichlet problem)

Far-field error

» Find solution u* such that u = u* 4+ u° = 0 on T for u’(r, §) = e'*" s

» Single-layer potential formulation of the integral equation S, pn = —uj,

» Solve for o}, then evaluate uy at “infinity” — up® (far-field)

[u (@) —ui ()] < ¢ (B2 10" lap+i ey + B 0" o)

Table: Computer time to build the single-layer S and its LU factors, and memory.

k Build (§) Memory (S§) Build (LU) Memory (L)
2 1.4b5e+1 872.37 MB 4.52e+1 301.17 MB
4 1.72e+1 999.79 MB 7.38e+1 375.09 MB
8w 2.20e+2 1235.0 MB 1.87e+2 572.26 MB
2 1.40e+1 179.88 MB 7.89e+0 68.007 MB
47 1.55e+1 208.40 MB 1.38e+1 85.899 MB
8w 1.83e+1 260.30 MB 3.64e+1 132.35 MB
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Numerical experiments — Helmholtz (half-spheres)

| Goal » Solving 3D Helmholtz Aus + k*us = 0 (exterior Dirichlet problem)

Far-field error

> Find solution u§ such that us = u® +u3 = 0 on I for u’(r,d) = etk cs?

» Single-layer potential formulation of the integral equation Ssp5 = —u’
> Solve for p5 with h < 1, then evaluate uj at “infinity” — u§°® (far-field)

0™ (2) — ug® ()| < e6*
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Figure: Acoustic scattering of a plane wave by half-spheres in 3D (§ = 0.5).
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Numerical experiments — Helmholtz (half-spheres)

| Goal » Solving 3D Helmholtz Aus + k*us = 0 (exterior Dirichlet problem)

Far-field error

> Find solution u§ such that us = u® +u3 = 0 on I for u’(r,d) = etk cs?

» Single-layer potential formulation of the integral equation Ssp5 = —u’
> Solve for p5 with h < 1, then evaluate uj at “infinity” — u§°® (far-field)
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Figure: Acoustic scattering of a plane wave by half-spheres in 3D (§ = 0.2).
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Numerical experiments — Helmholtz (half-spheres)

| Goal » Solving 3D Helmholtz Aus + k*us = 0 (exterior Dirichlet problem)

Far-field error

> Find solution u§ such that us = u® +u3 = 0 on I for u’(r,d) = etk cs?

» Single-layer potential formulation of the integral equation Ssp5 = —u’
> Solve for p5 with h < 1, then evaluate uj at “infinity” — u§°® (far-field)
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Figure: Acoustic scattering of a plane wave by half-spheres in 3D (5 = 0.1).

21/25



Numerical experiments — Helmholtz (half-spheres)

| Goal » Solving 3D Helmholtz Aus + k*us = 0 (exterior Dirichlet problem)

Far-field error

> Find solution u§ such that us = u® +u3 = 0 on I for u’(r,d) = etk cs?

» Single-layer potential formulation of the integral equation Ssp5 = —u’
> Solve for p5 with h < 1, then evaluate uj at “infinity” — u§°® (far-field)

0™ (2) — ug® ()| < e6*
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Figure: Acoustic scattering of a plane wave by half-spheres in 3D (5§ = 0).
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Numerical experiments — Helmholtz (half-spheres)

| Goal » Solving 3D Helmholtz Aus + k?us = 0 (exterior Dirichlet problem)

Far-field error

> Find solution u§ such that us = u® +u3 = 0 on I for u’(r,d) = etk cs?

» Single-layer potential formulation of the integral equation Ssyi = —u'
> Solve for p5 with h < 1, then evaluate uj at “infinity” — u§°® (far-field)

0™ (2) — ug® ()| < e6*

107!

1072

Relative error (far-field pattern)

10°%
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Half-distance &

Figure: Convergence of the far-field of the half-spheres as § — 0: Goal #2 achieved.
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Numerical experiments — Software

Singular integrals

» Implemented in Python, available on GitHub (~ 2000 ++)

» Shorter code for simple examples, available in paper (~ 60 ++)

# Step 1 - Mapping back:
a, b, c =0.6, 0.7, 0.5

Fy = lambda x: x[1] + 2%(2%b-1)*x[0]*x[1]
Fz = lambda x: 4%c*x[0]*x[1]

F = lambda x: np.array([Fx(x), Fy(x), Fz(x)])
4

J

# map
1 = lambda x: np.array([1 + 2*%(2xa-1)*x[1], 2*%(2*b-1)*x[1], 4*c*x[1]]) # Jacobian (1st col)
2 = lambda x: np.array([2*(2xa-1)*x[0], 1 + 2%(2%b-1)*x[0], 4*c*x[0]]1) # Jacobian (2nd col)
x0 = F([0.5, 1e-4]) + le-4*np.array([0, 0, 11) # singularity
# Step 2 - Locating the singularity:
e = lambda x: F(x) - x0
E = lambda x: np.linalg.norm(e(x))**2 # cost function

#*

dE = lambda x: 2*np.array([e(x) @ J1(x), e(x) @ J2(x)]1) gradient
xOh = minimize(E, np.zeros(2), method=’BFGS’, jac=dE, tol=1le-12).x # minimization
h = np.linalg.norm(F(x0h) - x0)

Singular integrals + boundary elements

Implemented in C-+-+, available as part of castor (&~ 3,000 ++)

>
» Gmsh for quadrilateral elements—more generally, any ply or vtk files
» Hierarchical matrices for compression

>

Parallel computations—Intel Xeon Gold (3.00 GHz, 36 cores) with 512 GB of RAM
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@ Integral equations

© Weakly singular integrals

© Numerical experiments

e Strongly singular integrals
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e Strongly singular integrals
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Strongly singular integrals — Setup & Method

» The double-layer potential involves the gradient

1@y  RE-y  Slz-u)
A |z —yl2 87 |z — y| 4

VyG = (z —vy)

» Therefore, we have to compute strongly singular integrals of the form of

7 |F(2) — zol®

» If h =0, then the integrand O(62~1)
> No regularization gives O(N~5), T_; regularization yields O(N 1)

> If h # 0, then the integrand is O(52 )

> Need T_» regularization to get O(N—0-5), T_; regularization yields O(N~1)

» Steps 1-5 as before, some subtleties when regularizing, e.g.,
—h

T o(#,h) = ————————
[1& — #0[2 + 2]
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Strongly singular integrals — Experiments

| Goal » Computing J(zo) for zo = F/(0.2,0.4) + 10742z and @o = F(0.2,0.4)

as = (0.6,0.7,0.5)

A A A ai ay as

@) = F(2e-01, 4e-01) + le-04z

10” 4
1072 4
s 0.5
3
o
—4
% 10 !
<
o«
1074~ —e— no regularization
—»— T, regularization
—— T, regularization
10 ‘ ‘ - : i
10° 10! 10? 10% 101 10°

Quadrature size N

Figure: Error versus quadrature size.
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Strongly singular integrals — Experiments

| Goal » Computing J(zo) for zo = F/(0.2,0.4) + 10742z and @o = F(0.2,0.4)

as = (0.6,0.7,0.5)
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Figure: Error versus quadrature size.
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Future work

| Goal » High-order methods for scattering by 3D geometric objects

Strongly singular integrals in high-order elements (ongoing)

v

> Inverse scattering problems in uncertain environments (ongoing)
» Hierarchical solvers for high-order elements (short-term)

» Study of 3D resonators (short-term)
>

More sophisticated models (long-term)
» Multi-trace boundary formulations
» Forward and inverse Maxwell's equations and elasticity problems

Figu re: Acoustic scattering of a plane wave by half-spheres in 3D.
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