Applying GMRES to the Helmholtz equation
with strong trapping: how does the number of
iterations depend on the frequency?

Jeffrey Galkowski ' Pierre Marchand >  Alastair Spence >  Euan Spence 2
April 14, 2021 — GdT IDEFIX

"University College London

2University of Bath

1/33



Considered problem

Scattering problem

- Solving Helmholtz equation —Au — k*u = 0 in RY\ Q, where Q is
an obstacle containing an open cavity, with particular attention
to elliptic cavity.

- Plane wave u'(x) = e®* with d = [cos(#), sin(#), 0].
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Considered problem

Scattering problem

- Solving Helmholtz equation —Au — k*u = 0 in RY\ Q, where Q is
an obstacle containing an open cavity, with particular attention
to elliptic cavity.

- Plane wave u'(x) = e®* with d = [cos(8), sin(8), 0].

Figure 1: Absolute value of total field for k = 122.473337808880 and 6 = = /4
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Boundary Integral Equations

Fundamental solution

._ i (1 2 ekl 3
Gr(x) == 4HO (RIIx||) forxe R\ {0}, and ] forx € R*\ {0},
Integral representation theorem
5 ous v inRY\ G
[ n)- 9,609 dot) - [ 6x- G o) =1
oQ aQ 0inQ
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Dp(u) — Sk<gu>+u =u, inRI\Q

Dirichlet problem (sound-soft problem) ~v(u) = 0

ou\ I ou\  ou'
Sk<ar1>_fy(u), and (2+D>(3n)_0n

Total field
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Direct formulations

- Dirichlet problem (sound-soft problem):

1 .
;?-,77 = E/d + D;? — I’I]Sk, A;?’n =L
! @ = aiw | u/
kngn ~ on

- Neumann problem (sound-hard problem)

. 1
Br,n = Hr +1n <2/d - Dk) By iH1 = L
u/

BryyU = inyu' — —
R YU = YU — =0
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Direct formulations

- Dirichlet problem (sound-soft problem):

1 :
Ay = Sla+ Dy — inSk, Ay i Lo — L

, Ou  ou

H |
— = —inwu
kngn ~ on

- Neumann problem (sound-hard problem)
. 1
Br,n = Hr +1n <2/d - Dk) y Brp i Hh = L

uI

BryyU = inyu' — —
R YU = YU — =0

Both are well-posed if (n) # 0, we can use regularization for By,

4/33



Quasimodes

Definition
V., IS said to be a quasimode if

—Av, — RV = 0(L(Rs)™")

(03

with Dirichlet boundary condition and the Sommerfeld radiation
condition, where ||v, |, = 1and L(k,) “large”.
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Quasimodes

Definition
V., IS said to be a quasimode if

—Av, — RV = 0(L(Rs)™")

(03

with Dirichlet boundary condition and the Sommerfeld radiation
condition, where ||v, |, = 1and L(k,) “large”.

From Betcke, Chandler-Wilde, Graham, Langdon, and Lindner 2010

: ||(A;?mku)_1||L2%L2 = L(I?a)
- if R9\ Q contains the ellipse

E:={(x,%) : (x1/a1)* + (x2/a2)? < 1}, and 9Q coincides with
the boundary of E in the neighborhoods of the points (0, +a;),

then

L(t) = e’' and k, is related to eigenvalues of the Laplacian
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Idea behind constructing quasimodes

Step 1 Build eigenfunctions of the Laplacian in E: using Matthieu
functions, there exists

—AUmp = Ry pUmn, INE

Step 2 These eigenfunctions are exponentially localizing along the
minor axis

Step 3 Build quasimodes with particular extension and modification
of these eigenfunctions to show L(t) = e”t

Step 4 Using Weyl's law, the density of quasimodes is related to the
density of eigenvalues for the Laplacian. It is O(k9~") in an
interval.
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Eigenvalues and singular values of A,

Discretization: P1 element, 10 points by wavelength

Af, Vv = AMv

k = 9.977120156613617 k = 22.526496854613104
. 05 o ° .
£ 0o E "
2 s &
£ [

il,
0051152253 3

Real
‘OEigenvalues for 2D elliptic cavity+Singular values for 2D elliptic cavity
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Eigenvalues and singular values of A,

Discretization: P1 element, 10 points by wavelength

k¥ = AMv
k =9.977120156613617 k = 22.526496854613104
IH—TF—FT—FT—"F—TT" = ‘ ‘ ‘ ]
. 05 T 15
£ 0o E "
2 0.5 =
E e
i]‘, B
O O O
0051152253 3
Real

‘OEigenvalues for 2D elliptic cavity+Singular values for 2D elliptic cavity‘

(Quasimode implies small eigenvalue) is difficult to prove!

(see preprint Galkowski, Marchand, and E. A. Spence 2021 for PDE) 2733



Eigenfunctions and bouncing ball modes

(a) k = 9.977120156613617 (b) k = 22.526496854613104

Figure 2: Eigenfunction associated with the smallest eigenvalue
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Flow of eigenvalues

g
O.IO*YY‘.
0.05%%
®
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IR < ;
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Real Real
(@) k € (5,10) (b) k € (20,25)

Figure 3: Flow of eigenvalues for A
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How does GMRes depend on the frequency?

* Ay, and By, are non-normal, so GMRes is often used to solve

the associated linear system.
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How does GMRes depend on the frequency?

and By, are non-normal, so GMRes is often used to solve

. A
A’?JI

the associated linear system.

Condition number

103,
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Figure 4: Scattering problem for an elliptic cavity with a plane wave of

incident angle 6 = 47 /10 and M™'A; ,

10/33



How does GMRes depend on the frequency?

and By, are non-normal, so GMRes is often used to solve

. A
A’?JI

the associated linear system.

Condition number

103,

—_
o
o

0
Mﬁw

50 100 150 200 250 300
frequency

Number of iterations

150+

1001

50

O
T

50 100 150 200 250 300
frequency

oInteger frequencies+Resonant frequencies |

Figure 4: Scattering problem for an elliptic cavity with a plane wave of

incident angle 6 = 47 /10 and M™'A; ,

- Goal: get a better understanding of the k-dependency.
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GMRes convergence




Let A € C"*" non-singular, b € C". We define

- initial guess: xg

- initial residual: ryp := b — Axg

« Krylov space: Kp := Span {ro,Aro,...,A" "r},
By definition,

r = i b — Ax = i A)roll,.
Irmlle = min, [Ib—Axnlz = min [lon(A)roll
Dm(o):1

It is difficult to take into account rq in the analysis (very little
literature and few results). Usually, one uses

r .
||r;n||22 < min Ipm(A)|, (but not sharp)
Dm(o):%
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GMRes bounds: eigenvalues

Suppose A =VDV~1

. _ . _ .
pmin [IPm(A)l < #(V) min [Ipm(D)] < (V) min - max [Pm(M)]
pm(0)=1 Pm(0)=1 pm(0)=1
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GMRes bounds: eigenvalues

Suppose A =VDV~1

. _ . _ .
pmin [IPm(A)l < #(V) min [Ipm(D)] < (V) min - max [Pm(M)]
pm(0)=1 Pm(0)=1 pm(0)=1

Spectrum is not enough to describe GMRes convergence
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GMRes bounds: numerical range

(Crouzeix and Palencia 2017) W(A) := {xX’Ax|x € C", x # 0, ||x|| = 1}
pn;i[gl IPm(A) < (1+‘[) IR 276 |pm( )|

m, XEW(A)
Pm(0)=1 F’m(o):1
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GMRes bounds: numerical range

(Crouzeix and Palencia 2017) W(A) := {x’Ax|x € C", x # 0, ||x|| = 1}
pn;i[gl IPm(A) < (1+‘[) LT |pm( )|

m, XEW(A)
Pm(0)=1 Pm( )

* v(A) :=max(|z| |z € W(A)) < [|A]
- (Beckermann, Goreinov, and
Tyrtyshnikov 2005)

. < (2 m
,min Xeﬁgé)\r)m( <@+,
pmFaber polynomial,
pm(0)=1
~ :=2sin _b__ <sin(B)
4—28/m
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GMRes bounds: numerical range

(Crouzeix and Palencia 2017) W(A) := {x’Ax|x € C", x # 0, ||x|| = 1}
pn;i[gl IPm(A) < (1+‘[) LT |pm( )|

m, XEW(A)
Pm(0)=1 F’m(o):1

* v(A) :=max(|z| |z € W(A)) < [|A]
- (Beckermann, Goreinov, and
Tyrtyshnikov 2005)

min max <(24+4)Y"

iy XeKﬁ(A)\Pm( <@+,
pmFaber polynomial,

pm(0)=1

S i

Hard to use with outliers near origin
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Cluster+outlier model

Assumptions:

< |\ < 1/2forj=1,...,[(outliers)
* R(\) >S>0forj=1+1,...,n (cluster)

Definitions

- Resolvent: R(x) := (zlqg — A)~"
- T encloses the cluster in the complex plane, while T is a circle
centered on ) forj=1...,1
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Cluster+outlier model

- Spectral projectors:

1

P = —
c 27l r

1
1
R(x)dx, and Poy := E %/ R(x) dx
: r
Jj=1 J

- q2) = H/’-:1(1 - )\j”z), minimal polynomial associated with
outliers

We use

pm(A) = C]{(A)Pm_[(A) - (Pcl =+ Pout)Ql(A)pm—l(A)
= PoutGi(A) Pm—i(A) + Paqi(A)pm—i(A)
=0
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Cluster+outlier model

. 1
Spectral projector: P := o Jr R(x) dx
[[rm (A, b, Xo)||2 .
—_—— P A)pm_i(A
Hfo(A,b,Xo)Hz _pm,r(]glpm,[,” CIQI( )pm l( )H
pm—((o):“
. |Aj —
< 27TIFI min max (H 2 |R@ o (@)
pm l(O):_‘]’

(Campbell, Ipsen, Kelley, and Meyer 1996)
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How to choose I' and p,,_?

Guidelines:

- T should not cross As := {z € C||R]| > 67"}

- We should control the distance between I' and the outliers
- We need to choose pp,_; to bound min max|pm,_(2)|

- We should bound the length of T
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How to choose I' and p,,_?

Guidelines:

- T should not cross As := {z € C||R]| > 67"}
- We should control the distance between I and the outliers

- We need to choose pp,_; to bound min max|pm,_(2)|

- We should bound the length of T

Solutions: Im

- Define I as a D-shaped domain to I
use Faber polynomials for py,_

Ty

- For ', we have

As(A) € W(A) + 6 C B(O, ||All + 9)

- For I'y, Bauer-Fike theorem:

As € UB(X;, 0(8)) A

Re
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Algebraic bound

For S> L > 0, there exists § > 0 so that

lIrm(A, b, Xo)ll2 < D). 5~ m—I
+2
Tro(A b.xo)]z ~ H i (0 +2)75
where
-D=|A|+o

- cos(fB) = L/([IAll +9)

© 4 1= 2sin ( ) <sin(B)

B
4—-28/m
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Application to BEM




Properties of A} ,

Assumptions:

- |\ < 1/2forj=1,...,[, correspond to resonant frequencies,
and move at k—independent speed

- R(N)>S>0forj=1+1,...,narein a cluster

- Density of outliers is O(kRI~")
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Properties of A} ,

Assumptions:
- |\ < 1/2forj=1,...,[, correspond to resonant frequencies,
and move at k—independent speed
- R(N)>S>0forj=1+1,...,narein a cluster
- Density of outliers is O(kRI~")
A priori results:
* [IAL kIl S R/ log(k + 2) if 82 does not contain a straight line,
1A% ¢l < RV? log(k + 2) otherwise
c ||(A;€’,?)*1|| ~ e%a for resonant frequencies
- Bauer-Fike theorem: As C U;B(\;, 0nk(A;))

- We choose 6" ~ k?¥=2 max; k() to compensate for increasing
density of outliers and non-normality
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Bound on the number of iterations

We suppose eigenvalues and singular values are well-approximated
by the Galerkin discretization M~"A; ,.
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Bound on the number of iterations

We suppose eigenvalues and singular values are well-approximated
by the Galerkin discretization M~"A; ,.

Theorem
With previous hypotheses, fore > 0 and L > 0 with L < S, we have

Mconvergence Z /?ffw + klx/z |0g(ka)(ki + kg_1 |Og(}?a)
+ log(ggﬁ(ﬁ(%)))) + O(log(ka)),

where

- the factor kY2 log(k,) comes from the growth of the operator
norm,

- k9=" comes from the growth of the outlier density,

- k9 comes from the exponentially decreasing eigenvalues and
their density growth.
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Numerical experiments




Considered problem

M7AL X = a%u’ — iku'
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Number of iterations

Dirichlet Neumann
jo2] T T T T 2] T T T T
g E
® 1025} T 10250
g g 10
E 102 |2
— I - 2 [
E Fw
£ 9 =90
z S IS IS (N N = B S I N
1018 102 102,2 1024 1018 102 1022 102,4
frequency frequency
Regularised Neumann
é . ‘ ‘ ‘ ‘ Integer frequencies Ko
@ 10721 o small cavity + small cavity
B ~ large cavity o large cavity
o 107
é O( k0'65)
Z 1051 O(k)

101.8 102 102,2 1024
frequency
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Properties of M~"A} ,

1009 [
1008 L

100.7 L

1018 102 10%2 1024
Frequencies

O0max for small cavity —O(k31)
A Omax for large cavity

I &9 .
N LT W T e v

50 100 150 200 250 300
Frequencies

OO, for small cavity
+Amin for small cavity
A Opin for large cavity
O Ain for large cavity

Figure 5: Singular values and eigenvalues of M~'A; , for bouncing ball

modes

Strong trapping has a weak effect for most frequencies

TLafontaine, E. A. Spence, and Wunsch 2020.
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Result without exponentially decreasing eigenvalues

Corollary
With previous hypotheses, fore > 0 and L > 0 with L < S, we have
Mconvergence 2 R+ RV log(R)(k + R4 log(R log(R))
+ log( (1(X)))) + O(log(R)),

max
1<j<ny,
where

- the factor k'/?log(k) comes from the growth of the operator
norm,

- kR9=1 comes from the growth of the outlier density,
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Properties of M~"A} ,

¢ 10| ST
)
8t .
&
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T
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Olog ?H/\<0.25 i% il olog(maxyea(a)(£(A))) for small cavity
1
by

+log(maxyep(a)(£(N))) for large cavity

log (T]ieqos 3 ) for large cavity
Figure 6: Outliers and eigenvalue conditioning of M‘1A,§7,e for bouncing ball
modes
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3D results

g
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frequency

o Integer frequencies for small cavity
+ Frequencies ks, ; for small cavity
» Integer frequencies for large cavity
o Frequencies ki, , for large cavity
- 1.2.5

O(k)

Figure 7: Number of iterations for incident angle 6 = 47/10 and a 3D

ellipsoid cavity
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Why is it not sharp?

- What we define as a cluster, is itself a “cluster+outlier”

- GMRes has a super linear convergence, we have

”rm(Aab7XO)H2 < pm
= <M 0 <
Iro(A, b, Xo)[l2 ™~

but it should be

||rm(A7baXO)H2 < m
—— == < g(m)", 0, —0
Tro(Ab,xo)], ~ (™" O
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Why is it not sharp?

- What we define as a cluster, is itself a “cluster+outlier”

- GMRes has a super linear convergence, we have

”rm(Aab7XO)H2 < pm
= <M 0 <
Iro(A, b, Xo)[l2 ™~

but it should be

||rm(A7baXO)H2 < m
—— == < g(m)", 0, —0
Tro(Ab,xo)], ~ (™" O

See videos
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Why is it not sharp?

- The right-hand side has a great influence

Number of iterations

10148 102 1022 10244
frequency

o Integer frequencies - § = 47 /10 * Bouncing ball modes - 6 = 47/10
+  Integer frequencies - # =0 2  Bouncing ball modes - 6 =0
o Integer frequencies - 0 = Bouncing ball modes - 0 =

O(k0‘65) ..... O(k,OA)

Figure 8: Number of iterations for Dirichlet problem with a small cavity
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Conclusion

What does this approach bring?

- It shows what are the features that makes the number of
iterations increases,

- It gives a tool to analyze new formulation,
- The GMRes bound can be used in other situations

- (Quasimodes implies small eigenvalues) does not depend on
integral formulation
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Quasimodes everywhere

(a) BEM (FreeFEM) (b) FEM with PML (FreeFEM)

Figure 9: Absolute value of the eigenvector associated with the smallest
eigenvalue for k = 9.977120156613617 and small cavity




Quasimodes everywhere

abs_eigvec_ul

(a) FEM with impedance condition (b) FEM BEM coupling (Xlife++)
(FreeFEM)

Figure 10: Absolute value of the eigenvector associated with the smallest
eigenvalue for k = 9.977120156613617 and small cavity




Conclusion

What does this approach bring?

- It shows what are the features that makes the number of
iterations increases,

- It gives a tool to analyze new formulation,

- The GMRes bound can be used in other situations

- (Quasimodes implies small eigenvalues) does not depend on
integral formulation

Marchand, Galkowski, A. Spence, and E. A. Spence 2021

Outlook

- Influence of right-hand side
- Regularised Neumann problem
- Build robust preconditioners
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Conclusion

What does this approach bring?

- It shows what are the features that makes the number of
iterations increases,

- It gives a tool to analyze new formulation,

- The GMRes bound can be used in other situations

- (Quasimodes implies small eigenvalues) does not depend on
integral formulation

Marchand, Galkowski, A. Spence, and E. A. Spence 2021

Outlook

- Influence of right-hand side
- Regularised Neumann problem
- Build robust preconditioners

Thank you for your attention! s
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