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6 ZW Reaction-diffusion equations

m Reaction-diffusion equations!

ur = Au+ F(u,v),

~

ve = 2Av + G(u, v)

m Pray-predator system (time)
activator versus inhibitor
activator—stimulates production

inhibitor—slows production down
m Notion of spreading rate (space)

m Spherical geometry: embryogenesis, growth of tumors, convective patterns

1Turing, The chemical basis of morphogenesis (1952)
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6 ZW My contributions

m Problem: Computing solutions of local and nonlocal PDEs of the form

u(t,0,0) = Lsu+N(u), (0,¢) € x[0,7] x [-7,7)

m Method: expand u in a spectral basis & time-stepping on expansion coefficients

Local PDEs: 2D Fourier series & implicit-explicit schemes

My contribution: a spectral method

m Nonlocal PDEs: spherical harmonics & exponential integrators

My contributions: def. nonlocal diffusion operator & a spectral method
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W Discretizing space with 2D Fourier series

m Local PDEs:

cos 6 1

ur = EAu+N(u), Au=ugy+ g + Gag Uew

m Double Fourier Sphere method (Meriless, Orszag, Townsend et al.?)

(a) i (©)o
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m Approximations by 2D Fourier series with N = n? coeffs:

n/2—1 n/2—1

ut,0,0) = > D ()T iy = g (—1)7

{=—n/2 m=—n/2

2Townsend, Wilber & Wright, Computing with functions in spherical and polar geometries (2016)
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W The local Laplace—Beltrami matrix

m Operator A discretized with a N x N matrix L acting on Fourier coefficients i

m PDE u; = e2Au+ N(u) — system of ODEs &/(t) = €2Ld + N(d)

m Method for constructing L:3

standard Fourier matrices

projection matrices s

m L has good numerical properties: 100

preserves doubled-up symmetry -

preserves smoothness at the poles

has real and negative eigenvalues

o 50 100 0 200 250

15
nz=671

can be inverted in O(N) operations

3M. & Nakatsukasa, Fourth-order time-stepping for PDEs on the sphere (2018)
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W Time-stepping with implicit-explicit schemes

m PDE u; = 2Au+ N(u) — system of ODEs &'(t) = €2Ld + N(4)

m Discretization with time-step At: % = G(kAt), k =0,1,...

Large O(N?) eigenvalues: stiffness , standard explicit time-stepping impractical

m Implicit-explicit (Ascher et al.#): implicit formula for L, explicit for N

(31 — 2AtPL) A%t = 40k — 0k + 4AtN(0F) — 2AtN(a%"1)  (second order)

m In practice, fourth-order schemes such as IMEX-BDF4 or LIRK4
= Nonlinear term in physical space: N(i%) = FA/(F~14%) with FFT matrix F

m Cost per time-step: O(N log N)

4Ascher, Ruuth & Wetton, Implicit-explicit methods for time-dependent PDEs (1995)
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6 ZW Spherical caps in embryogenesis

m Embryogenesis model:®

" P — &
oQ kpf(B
Hf(B) ®)
kd s
_____________ - B
Equations: Nondimensionalization:
Ur = e AU + kpf(U)V — kqU on 99, u=kqU/kpVo,
Vi=e2AVin Q, T = ky4t,
2 = e%/kd

2 (VV - n)=—kyf(U)V + kgU
= 2 Au+ N(u)

5Diegmiller, M., Muratov & Shvartsman, Spherical caps in cell polarization (2018)
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W Spherical caps in embryogenesis

m Random initial conditions relax to a single cap

m Constant initial conditions with transient convection also relax to a single cap

Convection on écom.won off . Steady state cap ‘
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czlea— Software

m  Chebfun: MATLAB package for computing to = 15 digits of accuracy

m Function approximation and PDE solvers in 1D/2D/3D, on the sphere, etc.

m Led by Nick Trefethen at the University of Oxford

Vc\}/e\l/l\;A About News Download Docs Examples Support Q @

Aurentz, Austin,
Chebfun 0

Driscoll, Filip,
Chebfun is an open-source package for computing with functions to about 15-digit accuracy. Most
Chebfun commands are overloads of familiar MATLAB commands — for example sum(£) computes an

integral, roots (£) finds zeros, and u = L\£ solves a differential equation. G uttel , H a Ie,

DOWNLOAD V5.7.0 BROWSE SOURCE

Hashemi, Nakatsukasa,

Platte, Townsend,

d = 204(-1.2 3.2 -1 1]; tspan = [0 46.5];

o Y ooty PLEv 5 0y Pt Trefethen, Wright
Bt o () B (AT AT
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W What are nonlocal operators?

m Standard differential operators are local:

m It is possible to define nonlocal analogues: ©

s X - X
Dsf(x) :/0 Wdh

m Examples include fractional differential operators and integral operators

m When are they useful?
m The phenomenon we are interested in is intrinsically nonlocal, e.g., peridynamics

m The phenomenon is local but hard to discretize—approximating the local
phenomenon with a nonlocal model, and then discretizing the latter may be easier

m We do not know—the parameter § gives more flexibility in the modeling process

SDu, Nonlocal modeling, analysis, and computation (2019)
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é ZW Discretizing space with spherical harmonics

m Nonlocal PDEs:

ue = ELsu+N(u), Lsu(x) = /sz ps(Ix = yI) [u(y) — u(x)] dQ(y)

m Operator L decouples the spherical harmonic modes (¢ > 0, —¢ < m < {):

1
L5V (0, 0) = (27r [ Py~ 1yos(v/20 =) dr) )

As(€)
LoVi(60,0) = AYP(0,0) = —U(C +1)Y(6,9)

m Approximations by spherical harmonic series with N = (n+ 1)(2n + 1) coeffs:

n +£
u(t707‘p) ~ Z Z ﬁim(t)yém(evtp)

£=0 m=—¢
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W The nonlocal Laplace—Beltrami matrix

m L; discretized” with a matrix Ls acting on spherical harmonics coefficients i

m PDE u; =€2Lsu+ N(u) — system of ODEs ii'(t) = €?Lsii + N(ii)

m Ls is diagonal with entries A5(¢):

1
As(0) = 271'/ (Pg(t)fl)pg( 2(1 — t)) dt wef% s
_1 ,
107 4 i
1 107104 ;
pa( 2(1 — t)) o Ao X[o,5] R I
ERURCRES
2 %
& 101 ] %
) 1014 ]
m Computation of A\s(¢):
105
modified Clenshaw—Curtis quadrature 1071
0 200 400 600 800 1000
recurrence & asymptotic formulas !

7Slevinsky, M. & Du, A spectral method for nonlocal diffusion operators on the sphere (2018)

Fourth-order time-stepping for PDEs on the sphere—and more 12 /17



. s
XE%‘EVL&CHN.QUE ﬂ 7 Nonlocal PDEs: Algorithms (3/3)
W Time-stepping with exponential integrators

m PDE vy = 2L5u+ N(u) — system of ODEs i’ (t) = e?Lsii + N(i)

m Discretization with time-step At: % = i(kAt), k =0,1,...

Larges O(N) eigenvalues: stiffness , standard explicit time-stepping impractical

m Exponential integrators (Hochbruck & Ostermann®): exact Ls, numerical N

L = AP gy (2L5) 1 (e27s — )N(*)  (first order)

m In practice, fourth-order schemes such as ETDRK4 (best for diagonal problems®)

m Nonlinear term in physical space: N(i#¥) = GA/(G~1i¥) with FST matrix G

m Cost per time-step: O(N log? N)

8Hochbruck & Ostermann, Exponential integrators (2010)
°M. & Bootland, Solving periodic stiff PDEs in 1D, 2D and 3D with exponential integrators (2020)
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W Nonlinear advection on the sphere

Background

m Nonlinear advection equations on the sphere such as the barotropic vorticity
equation are of significant importance in atmospheric numerical modeling
A"y 0 A"y A .
ut+( . )u>\—( . ) (up —2Qsinf) =0
sin @ sin 0

m A first step towards solving the shallow water & Navier—Stokes equations

m Spectral accuracy in space: spherical harmonics, RBFs, DFS method

m DFS is the only one that has O(N log N) cost per time-step for N grid points
Goal

m Extend my DFS-based algorithm to solve nonlinear advection equations
Challenges

m Pole conditions—for reaction-diffusion equations, numerically satisfied; for advection
equations, have to be enforced while maintaining spectral accuracy

m/2—1 m/2—1 .
STode= >, (—Wau=0, [k=1
j=—m/2 j=—m/2

m Aliasing instabilities—for reaction-diffusion equations, Laplacian had a stabilizing
effect; for advection equations, stabilization needed with, e.g., vanishing viscosity
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W A nonlocal vector calculus on the sphere

Background

m Nonlocal models are ubiquitous in applied fields including materials science, fluid
dynamics, fracture mechanics, and image analysis

m Already introduced nonlocal diffusion operators on the sphere

25000 = [ ps(lx = y) lu(y) = u)] d2y)

Goal

m Develop a nonlocal vector calculus on the sphere, including nonlocal surface
divergence, gradient, and curl operators together with their adjoints

Gsu(x) = [ [ulx. ) + uly, )] as(x,y)dRAy)

Challenges

m Requires the use of vector spherical harmonics—expansions in vector spherical
harmonics may be easily obtained from the Helmholtz—Hodge decomposition

m Nonlocal operators and their adjoints act on one- or two-point functions

GiV(x,y) = V(x) - as(x,y) + V(y) - as(y, x)

m Vector fields on manifolds are tricky to handle
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W Hierarchical solver for high-order BEM

Background

m Consider the following 3D Helmholtz equation,
7(A+k2)u(x):0, x €R*\Q,
u(x) = f(x), xel

m This is a Dirichlet exterior problem whose solution is given by u = S [%} with
ou
[sten |5t aren =), xer
r n
Goals
m Design a fast hierarchical solver for high-order boundary elements on curved surfaces
Challenges

m Curved surfaces (e.g., unit sphere)—high-order polynomials need to be combined
with high-order meshes (i.e., curved elements)

m Singular integrals—regularization or/and semi-analytic methods

m Dense matrices—hierarchical matrices for faster matrix-vector products
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é ZW Deep learning approximation theory

Background

m Why and when do deep networks break the curse of dimensionality?
m For a real-valued function u in RY with smoothness m and for some prescribed ¢ > 0,

d
lu—uwl] <e with W=0O(e m)

m Above result: curse of dimensionality, i.e., W grows geometrically with d

m Bandlimited functions u of the form*®

u(x) = /d G(x-y)f(y)dy, G isanalytic, suppf C [—1, 1]d7
R
can be approximated with error € by networks of size W = O (e~?log® e *)
= It resembles the solution to Helmholtz equation — (A + k*) u = f in R?

Goal

m Study the curse of dimensionality in the solutions of high-dimensional PDEs
Challenge

m Approximation of G—for Helmholtz equation, it is in general singular

19M., Yang & Du, Deep ReLU networks for bandlimited functions (2020)
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