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SpinDoctor Toolbox

MATLAB toolbox including:
» Geometry generation and handling

» DMRI! simulation by solving BTDPE?, HADC3, STA#,
HARDI%[1]

Neuron Module[2]
Matrix Formalism module[3]
Different configurations and options

Visualization

! Diffusion Magnetic Resonance Imaging
2Bloch-Torrey Partial Differential Equation
3Homogenized Apparent Diffusion Coefficient model
*Short Time Approximation

®High Angular Resolution Diffusion Imaging



Background: Bloch-Torrey PDE (general form)

SpinDoctor solves for the complex transverse water proton

magnetization M:

ot

Equation support:

9 M(x,t) = —inf(t)g - x M(x,£) + V - (o(x)YM(x,)) (1)

Model input: magnetic field
gradient pulsed sequence

(Xa t) € x [0, Techo]a
f [0, Techo) = [-1,1]

Initial spin density:
geR3

M(x,0) = p(x), x€Q
Model output: acquired signal
Boundary conditions (Neumann):

S(f, :/Mx,Tecodx
g S = [ Mix T

o(x)VM(x, t)-n(x) =0,



Bloch-Torrey PDE: SpinDoctor assumptions |

Domain consists of N cells
with or without nuclei and ECS®

Ncell
Q=|Jaruarrtuos
i=1
Mi(x,t), xeQPn
M(X, t): M,’OUt(Xa t)a XEQ?Ut’
MeS(x,t), x € Q=
pln’ X € Qlln 0.|n7
p(x) = p™ x e, o(x) = {0,
pecs X € QeCS O.ecs
) Y



Bloch-Torrey PDE: SpinDoctor assumptions |l

Interface conditions
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Gradient sequences |

SpinDoctor comes with support for the following gradient
sequences:

» Pulsed Gradient Spin Echo (PGSE)[4]:

F(t) = Lpoey(t) — Lia,ats(t);
» Oscillating Gradient Spin Echo (OGSE)[5, 6]:

2mn

f(t) = cos (27(;”1?) Ljo,5(t) —cos < 5 (- A)) Lia,a+4(2);

» Other time profiles f, including double-PGSE, sin-OGSE and
custom time profiles.
The SpinDoctor algorithms are optimized for the most commmon
time profiles, and also support arbitrary time profiles, where the
integral quantities are computed numerically.



Gradient sequences I

Important quantity: b-value (combined effect of strength and
duration of pulses)

mnmm:wwmﬁﬁm“w(ﬂﬁwmﬁa

Free diffusion (with diffusivity o): signal attenuation is given by

e—ob

To account for deviation from free diffusion: replace ¢ — ADC
(“Apparent” Diffusion Coefficient)

g\ _ 0, S(s(fb)
Am<ﬁm0"aﬁg S(7,0)



Matrix Formalism — Laplace eigenvalue decomposition

Find pairs (), ¢) satisfying

=V (0(x)Vo(x)) = Ap(x), x€Q, (2)

with the same conditions on I_i,-"’O”t, F?”t’ecs and 9% as for the
BTPDE.

For a line segment with length L and diffusivity o:

—1)\?2
/\,,:<7T(HL)> o, n=12,...

A given eigenvalue A may thus be associated with a length scale:

U(N) = 71'\/:, 7= 9] / (x)dx.



Matrix Formalism approximation

Truncate Laplace eigenfunction basis at a level Ngjg:

Neig

MYF(x,8) =D du(x)vi(t) = ¢T(x)w (1)

k=1

where ¢ = (o1, ..., (;SNeig)T € RMeis is ordered such that
O=XM<Xm<M<...andv= (Vla---,VNeig)T € CNeie, Then v
is solution to

% = (L + ivf(1)A(g)) v(t),

where L = diag(A1,..., Ay, ), A(g) = [ 8- xp(x)o"(x) dx, and
v(0) =  p(x)(x) dx.



Matrix Formalism approximation — PGSE sequence

For PGSE, the Bloch-Torrey operator in the Laplace basis is

constant:
K(g) =L +iyA(g) € RMNewx e,

The final magnetization is given by
MMF(Xa Techo) = d)T(X)e*éK*e*(A*(S)LeféKV(O)

where * denotes the complex conjugate transpose, as opposed to .



Matrix Formalism approximation — general case

For an arbitrary time profile f, the Bloch-Torrey operator is
time-dependent:

K(f,g)(t) = L+ ivf(t)A(g),

Using a piece-wise constant approximation[7] of the time profile:

int
(Techo) = (He i ') e MK o m02K26=01K1, ()

where {Z;}i—1,. n,, are intervals such that [0, Techo) = UIN:'"{ 7,
f(t)=f; for t e Z;, 6; = |Z;i], and K;(g) = L + ivfiA(g).
To compute the constants: quadrature

f 5/ (F(minT) + F(maxT;))



Finite Element discretization |

In SpinDoctor, we manually construct the finite element problem,
based on [8].

Divide the domain €2 into Nyode points qq,--- ,qp,_,. € R3 and
Nejement tetrahedra. Piece-wise linear (Pi-elements) basis functions
@ =(P1, s PNps) | € RNnode are defined by:

©i(qy) = djx  (Kronecker symbol),

linear on each tetrahedron that touches node j. The nodes include
double nodes on Fi,-”’°“t and ¢""*, for which there is one basis
function for each side of each node. Their shared support lies on
[ineut o [OULESS which is of measure zero in 3D (“dx”), but not
in 2D (“dI™).



Finite Element discretization |l

Mass matrix:
M = [ o(x)eT(x)dx

Stiffness matrix:
S = [ 0()Vie(x) (V) (x)dx (Vip & RN )
Q
Flux matrix (for I = Uf\iel” I'ii"'OUt U I'?“t'ecs):

Q= /K(X)¢(x)s"0T(x)dl', 3 = {_‘Pj j out-node
r

@j  j in-node or ECS-node

Moment matrices

JU = / up(x)p'(x)dx, u=x,y,z
Q



Finite element discretization — BTPDE solution

Finite element approximation of the magnetization:

node

Z pj(x = @ (x)&(1).

The vector of coefficients & € CNede is the solution of

M2 _

M3: = — (9 (1)J(g) + S + Q) &(0)

where &;(0) = p(q;) are the intial conditions and
J(g) = &J* + g,J” + g.J?. These three matrices are only
assembled once.



Finite element discretization — Matrix Formalism solution |

Find L = diag(A1,...,An,,) and P = (py,...,pp,
such that

) ) c RNnodeXNeig
ig

MPL =(S+ Q)P
Then ¢ = PT¢. The Matrix Formalism solution has the same
expression as before, by replacing the moment matrices

AY=PTJP, u=x,y,z

The MATLAB command eigs can exploit the matrix properties
(sparsity, symmetry, M positive definite), and compute a subset
Neig of all the eigenvalues Nyode.

Choice of Ngjg: filter length scales, by setting £min:

Neig = min{n | g()\n) g Emm}



Low interface permeability
Laplace eigenfunctions

Finite element discretization — Matrix Formalism solution Il

High interface permeability
Laplace eigenfunctions
:i'ﬁ:" |3? :. ] . |
Gradient sequence g(t)
Magnetization fields Magnetization fields
N B .

D¢
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Performance improvements

v

v

Allocation, evade copying

Vectorization

Parallelization (outer loops only) — solve for different gradient
sequences in parallel

Only compute quantities once (e.g. matrix assembly)
Optimize at the right level — inner loops

Exploit assumptions in specific configurations, without loss of
generality

» Constant quantities
» Specific time profiles f
» Sparsity patterns, symmetric and positive definite FE matrices

Reusing and saving solutions

MATLAB specific improvements



Other modifications

vvyyy

New input parameter system: MATLAB scripts
Possibility of adding T,-relaxation terms in BTPDE and MF
Support for arbitrary time profiles in all solvers

Remove PDE-toolbox dependency for eigenvalue
decomposition. The use of the Parallel computing toolbox is
optional

Thorough commenting

» Consistent naming conventions and code style

» Self-explanatory names

> Airl

» Hierarchy and indexing

» Code factorization and reuse — less duplicate files

Modularity — users can change parts of the code
Merge “modules” (NeuronModule, MatrixFormalismModule)



Model gallery

Provide a selection of models of different fidelity levels and
assumptions:

» BTPDE — High fidelity, outputs magnetization

» Matrix Formalism — Reduced order model, but well chosen
functional bases of arbitrary precision. Outputs magnetization

» Signal approximation using b-values and ADC or a MF
diffusion tensor (Gaussian Approximation)

» Homogenization techniques for the ADC[9]

» Short Time Approximation (STA)[10, 11, 12]

> Analytical solutions for certain geometries[13, 14]

» Monte Carlo simulations (not included in SpinDoctor)

The different solvers use the same data format.



Postprocessing

Compute signal from magnetization
Fit ADC from signal
Error estimations

Useful plots

vvyyVvyyvyy

Solution behavior using Matrix Formalism with eigenfunction
bases

v

Data analysis in Paraview




Future of SpinDoctor |

> MATLAB is good for prototyping. Julia is efficient and
expressive. Python can be combined with a C4++ backend.

» Adapt for other finite element types, possibly using a pre-built
software (Gridap[15], FEniCS[16])

a_t(u) * v)xdQ
imkyxf(t) * g-x * u * v )*xdQ

o * V(u) - V(v) )xdQ
K % jump(u) * v )xdl

» Further explore ODE solvers — take full advantage of the
sparse, linear and interval-wise constant Bloch-Torrey
operator. DifferentialEquations.jl[17] has an enormous gallery
of optimized solvers.



Future of SpinDoctor Il

tanguage

encloncy

"http://www.stochasticlifestyle.com/wp- content/uploads/2019/
08/de_solver_software_comparsion.pdf

oy < = > =
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