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SpinDoctor Toolbox

MATLAB toolbox including:

I Geometry generation and handling

I DMRI1 simulation by solving BTDPE2, HADC3, STA4,
HARDI5[1]

I Neuron Module[2]

I Matrix Formalism module[3]

I Different configurations and options

I Visualization

1Diffusion Magnetic Resonance Imaging
2Bloch-Torrey Partial Differential Equation
3Homogenized Apparent Diffusion Coefficient model
4Short Time Approximation
5High Angular Resolution Diffusion Imaging
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Background: Bloch-Torrey PDE (general form)

SpinDoctor solves for the complex transverse water proton
magnetization M:

∂

∂t
M(x , t) = −iγf (t)g · x M(x , t) +∇ · (σ(x)∇M(x , t)) (1)

Equation support:

(x , t) ∈ Ω× [0,Techo],

Initial spin density:

M(x , 0) = ρ(x), x ∈ Ω

Boundary conditions (Neumann):

σ(x)∇M(x , t)·n(x) = 0, x ∈ ∂Ω

Model input: magnetic field
gradient pulsed sequence

f : [0,Techo]→ [−1, 1]

g ∈ R3

Model output: acquired signal

S(f , g) =

∫
Ω
M(x ,Techo) dx
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Bloch-Torrey PDE: SpinDoctor assumptions I

Domain consists of Ncell cells
with or without nuclei and ECS6

Ω =

Ncell⋃
i=1

Ωin
i ∪ Ωout

i ∪ Ωecs

M(x , t) =


M in

i (x , t), x ∈ Ωin
i

Mout
i (x , t), x ∈ Ωout

i

Mecs(x , t), x ∈ Ωecs

,

ρ(x) =


ρin, x ∈ Ωin

i

ρout, x ∈ Ωout
i

ρecs, x ∈ Ωecs

, σ(x) =


σin, x ∈ Ωin

i

σout, x ∈ Ωout
i

σecs, x ∈ Ωecs

,
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Bloch-Torrey PDE: SpinDoctor assumptions II

Interface conditions

Γin,out
i = Ωin

i ∩ Ωout
i ,

Γout,ecs
i = Ωout

i ∩ Ωecs,

Flux continuity and interface
permeability ([[a]]ji = aj − ai ):

[[σ∇M]]i ,out
i ,in ·n

in,out
i = 0, on Γin,out

i

[[σ∇M]]ecs
i ,out·n

out,ecs
i = 0, on Γout,ecs

i

σin∇M in
i ·n

in,out
i = κin,out[[M]]i ,out

i ,in , on Γin,out
i

σout∇Mout
i ·n

out,ecs
i = κout,ecs[[M]]ecs

i ,out, on Γout,ecs
i

6Extra-Cellular Space
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Gradient sequences I

SpinDoctor comes with support for the following gradient
sequences:

I Pulsed Gradient Spin Echo (PGSE)[4]:

f (t) = 1[0,δ](t)− 1[∆,∆+δ](t);

I Oscillating Gradient Spin Echo (OGSE)[5, 6]:

f (t) = cos

(
2πn

δ
t

)
1[0,δ](t)−cos

(
2πn

δ
(t −∆)

)
1[∆,∆+δ](t);

I Other time profiles f , including double-PGSE, sin-OGSE and
custom time profiles.

The SpinDoctor algorithms are optimized for the most commmon
time profiles, and also support arbitrary time profiles, where the
integral quantities are computed numerically.
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Gradient sequences II

Important quantity: b-value (combined effect of strength and
duration of pulses)

b(f , ‖g‖) = γ2‖g‖2

∫ Techo

0
dt

(∫ t

0
f (s)ds

)2

.

Free diffusion (with diffusivity σ): signal attenuation is given by

e−σb

To account for deviation from free diffusion: replace σ → ADC
(“Apparent” Diffusion Coefficient)

ADC

(
f ,

g
‖g‖

)
= − ∂

∂b
log

S(f , g(f , b))

S(f , 0)
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Matrix Formalism – Laplace eigenvalue decomposition

Find pairs (λ, φ) satisfying

−∇ · (σ(x)∇φ(x)) = λφ(x), x ∈ Ω, (2)

with the same conditions on Γin,out
i , Γout,ecs

i and ∂Ω as for the
BTPDE.
For a line segment with length L and diffusivity σ:

λn =

(
π(n − 1)

L

)2

σ, n = 1, 2, . . .

A given eigenvalue λ may thus be associated with a length scale:

`(λ) = π

√
σ̄

λ
, σ̄ =

1

|Ω|

∫
Ω
σ(x) dx .
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Matrix Formalism approximation

Truncate Laplace eigenfunction basis at a level Neig:

MMF(x , t) =

Neig∑
k=1

φk(x)νk(t) = φT(x)ν(t)

where φ = (φ1, . . . , φNeig
)T ∈ RNeig is ordered such that

0 = λ1 < λ2 ≤ λ3 ≤ . . . and ν = (ν1, . . . , νNeig
)T ∈ CNeig . Then ν

is solution to
∂ν

∂t
= (L + iγf (t)A(g))ν(t),

where L = diag(λ1, . . . , λNeig
), A(g) =

∫
Ω g · xφ(x)φT(x) dx , and

ν(0) =
∫

Ω ρ(x)φ(x)dx .
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Matrix Formalism approximation – PGSE sequence

For PGSE, the Bloch-Torrey operator in the Laplace basis is
constant:

K(g) = L + iγA(g) ∈ RNeig×Neig .

The final magnetization is given by

MMF(x ,Techo) = φT(x)e−δK
∗
e−(∆−δ)Le−δKν(0)

where ∗ denotes the complex conjugate transpose, as opposed to T.
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Matrix Formalism approximation – general case

For an arbitrary time profile f , the Bloch-Torrey operator is
time-dependent:

K(f , g)(t) = L + iγf (t)A(g),

Using a piece-wise constant approximation[7] of the time profile:

ν(Techo) =

(
Nint∏
i=1

e−δiKi

)
ν(0) = e−δNint

KNint . . . e−δ2K2e−δ1K1ν(0),

where {Ii}i=1,...,Nint
are intervals such that [0,Techo] =

⋃Nint
i=1 Ii ,

f (t) = fi for t ∈ Ii , δi = |Ii |, and Ki (g) = L + iγfiA(g).
To compute the constants: quadrature

fi =
1

δi

∫
Ii
f (t) dt ≈ 1

2
(f (min Ii ) + f (max Ii ))
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Finite Element discretization I

In SpinDoctor, we manually construct the finite element problem,
based on [8].
Divide the domain Ω into Nnode points q1, · · · ,qNnode

∈ R3 and
Nelement tetrahedra. Piece-wise linear (P1-elements) basis functions
ϕ = (ϕ1, . . . , ϕNnode

)T ∈ RNnode are defined by:

ϕj(qk) = δjk (Kronecker symbol),

linear on each tetrahedron that touches node j . The nodes include
double nodes on Γin,out

i and Γout,ecs
i , for which there is one basis

function for each side of each node. Their shared support lies on
Γin,out
i or Γout,ecs

i , which is of measure zero in 3D (“dx”), but not
in 2D (“dΓ”).



15 / 30

Finite Element discretization II

Mass matrix:

M =

∫
Ω
ϕ(x)ϕT(x) dx

Stiffness matrix:

S =

∫
Ω
σ(x)∇ϕ(x) (∇ϕ)T(x) dx (∇ϕ ∈ RNnode×3)

Flux matrix (for Γ =
⋃Ncell

i=1 Γin,out
i ∪ Γout,ecs

i ):

Q =

∫
Γ
κ(x)ϕ̃(x)ϕ̃T(x) dΓ, ϕ̃j =

{
−ϕj j out-node

ϕj j in-node or ECS-node

Moment matrices

Ju =

∫
Ω
uϕ(x)ϕT(x)dx , u = x , y , z
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Finite element discretization – BTPDE solution

Finite element approximation of the magnetization:

M(x , t) =

Nnode∑
j=1

ϕj(x)ξj(t) = ϕT(x)ξ(t).

The vector of coefficients ξ ∈ CNnode is the solution of

M
∂ξ

∂t
= − (iγf (t)J(g) + S + Q) ξ(t),

where ξj(0) = ρ(q j) are the intial conditions and
J(g) = gxJx + gyJy + gzJz . These three matrices are only
assembled once.
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Finite element discretization – Matrix Formalism solution I

Find L = diag(λ1, . . . , λNeig
) and P = (p1, . . . ,pNeig

) ∈ RNnode×Neig

such that

MPL = (S + Q)P

Then φ = PTϕ. The Matrix Formalism solution has the same
expression as before, by replacing the moment matrices

Au = PTJuP, u = x , y , z .

The MATLAB command eigs can exploit the matrix properties
(sparsity, symmetry, M positive definite), and compute a subset
Neig of all the eigenvalues Nnode.
Choice of Neig: filter length scales, by setting `min:

Neig = min{n | `(λn) ≤ `min}



18 / 30

Finite element discretization – Matrix Formalism solution II
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Performance improvements

I Allocation, evade copying

I Vectorization

I Parallelization (outer loops only) – solve for different gradient
sequences in parallel

I Only compute quantities once (e.g. matrix assembly)

I Optimize at the right level – inner loops
I Exploit assumptions in specific configurations, without loss of

generality
I Constant quantities
I Specific time profiles f
I Sparsity patterns, symmetric and positive definite FE matrices

I Reusing and saving solutions

I MATLAB specific improvements
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Other modifications

I New input parameter system: MATLAB scripts

I Possibility of adding T2-relaxation terms in BTPDE and MF

I Support for arbitrary time profiles in all solvers

I Remove PDE-toolbox dependency for eigenvalue
decomposition. The use of the Parallel computing toolbox is
optional

I Thorough commenting
I Consistent naming conventions and code style

I Self-explanatory names
I Air!
I Hierarchy and indexing
I Code factorization and reuse – less duplicate files

I Modularity – users can change parts of the code

I Merge “modules” (NeuronModule, MatrixFormalismModule)
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Model gallery

Provide a selection of models of different fidelity levels and
assumptions:

I BTPDE – High fidelity, outputs magnetization

I Matrix Formalism – Reduced order model, but well chosen
functional bases of arbitrary precision. Outputs magnetization

I Signal approximation using b-values and ADC or a MF
diffusion tensor (Gaussian Approximation)

I Homogenization techniques for the ADC[9]

I Short Time Approximation (STA)[10, 11, 12]

I Analytical solutions for certain geometries[13, 14]

I Monte Carlo simulations (not included in SpinDoctor)

The different solvers use the same data format.
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Postprocessing

I Compute signal from magnetization

I Fit ADC from signal

I Error estimations

I Useful plots

I Solution behavior using Matrix Formalism with eigenfunction
bases

I Data analysis in Paraview
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Future of SpinDoctor I

I MATLAB is good for prototyping. Julia is efficient and
expressive. Python can be combined with a C++ backend.

I Adapt for other finite element types, possibly using a pre-built
software (Gridap[15], FEniCS[16])

I Further explore ODE solvers – take full advantage of the
sparse, linear and interval-wise constant Bloch-Torrey
operator. DifferentialEquations.jl[17] has an enormous gallery
of optimized solvers.
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Future of SpinDoctor II

7

7http://www.stochasticlifestyle.com/wp-content/uploads/2019/

08/de_solver_software_comparsion.pdf

http://www.stochasticlifestyle.com/wp-content/uploads/2019/08/de_solver_software_comparsion.pdf
http://www.stochasticlifestyle.com/wp-content/uploads/2019/08/de_solver_software_comparsion.pdf
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