Recovery of remanent magnetizations using geometric measure theory, 11 and total variation regularization

Cristóbal Villalobos Guillén

2/11/2020

Cristóbal Villalobos Guillén

Recovery of Remanent Magnetizations

2/11/2020

The main problem we are interested in is the one of recovering the remanent magnetization M of a rock sample from measurements of its magnetic field B.

Using the magnetic potential $\boldsymbol{\Phi}$ which satisfies

$$\mathbf{B} = \mu_0 \left(\mathbf{M} - \operatorname{grad} \Phi \right)$$
$$\Delta \Phi = \operatorname{div} \mathbf{M}$$

we study the inverse problem for the recovery of M when this magnetization is modeled by a vector valued measure.

We use methods for recovering M based on total variation regularization.

This work is part a collaborative project from the following:

- Eduardo Andrade Lima and Benjamin Weiss of the MIT Department of Earth, Atmospheric, and Planetary Sciences.
- Laurent Baratchart, Sylvain Chevillard and Juliette Leblond of the FACTAS, (formerly APICS) team in INRIA Sophia Antipolis.
- Doug Hardin and Edward Saff of Vanderbilt University

The measurements are usually obtained form a Scanning Magnetic Microscope (SMM) such as the instrument used by the research team in the MIT.

Q will denote the set on which we take the measurement.

S will denote a super set of the magnetization support.

Example of a reconstruction

Cristóbal Villalobos Guillén

Recovery of Remanent Magnetizations

2/11/2020 5 / 34

Theoretical framework

The magnetic moment

is a vector **m** that measures the strength and direction of objects that generate magnetic fields.

A magnetic dipole

can be viewed as the limit of a current loop that shrinks to a point with constant moment.

For a dipole at the point $y\in \mathbb{R}^3$ with magnetic moment m, the field at the point x is

$$\mathsf{B}(\mathsf{x}) = -\frac{\mu_0}{4\pi} \left(\frac{\mathsf{m}}{|\mathsf{x} - \mathsf{y}|^3} - 3(\mathsf{x} - \mathsf{y}) \frac{(\mathsf{x} - \mathsf{y}) \cdot \mathsf{m}}{|\mathsf{x} - \mathsf{y}|^5} \right)$$

The magnetization of an object is a density for the magnetic moment. We will model magnetizations by vector valued Borel measures. $\mathcal{M}(S)$ denotes the space of Borel measures supported on $S \subset \mathbb{R}^3$.

Each $M \in \mathcal{M}(S)^3$ is of the form $dM = u_M d|M|$, where |M| is a positive Borel measure supported on S and $|u_M| = 1 |M|$ -a.e.

In this case the Total Variation Norm of a measure ${\bf M}$ is

$$\|\mathsf{M}\|_{\mathcal{T}V} := |\mathsf{M}|(\mathbb{R}^3).$$

Note that in the case where $\mathbf{M} = \operatorname{grad} u$ then $\|\mathbf{M}\|_{TV}$ coincides with the total variation of u.

For a magnetization M we will define $\Phi(M) \in L^1_{loc}(\mathbb{R}^3)$, the scalar magnetic potential of M as the unique distribution that satisfies

$$\Delta \Phi = \operatorname{div} M$$

and for any point \boldsymbol{x} not in the support of \boldsymbol{M}

$$\Phi(\mathsf{M})(\mathsf{x}) = \int (\operatorname{grad} \Gamma)(\mathsf{x}-\mathsf{y}) \cdot \mathrm{d}\mathsf{M}(\mathsf{y}) = \frac{1}{4\pi} \int \frac{\mathsf{x}-\mathsf{y}}{|\mathsf{x}-\mathsf{y}|^3} \cdot \mathrm{d}\mathsf{M}(\mathsf{y}),$$

where $\Gamma(x) := -1/(4\pi |x|)$ is the Newtonian kernel. Then we define the magnetic field B(M) generated by M as

$$\mathsf{B}(\mathsf{M}) := \mu_0 \left(\mathsf{M} - \operatorname{grad} \Phi(\mathsf{M}) \right).$$

Consider a finite, positive Borel measure ρ with support contained in Q and let $\mathbf{A} : \mathcal{M}(S)^3 \to L^2(Q, \rho)$ be the operator defined by

$$\mathbf{A}(\mathsf{M})(\mathsf{x}) := \mathsf{v} \cdot \mathsf{B}(\mathsf{M})(\mathsf{x}), \qquad \mathsf{x} \in Q. \tag{1}$$

10 / 34

Since $K_{\mathbf{v}}$ is continuous on $\mathbb{R}^3 \setminus \{0\}$ and Q and S are positively separated, it follows that $B_{\mathbf{v}}$ is continuous on Q and consequently \mathbf{A} does indeed map $\mathcal{M}(S)^3$ into $L^2(Q, \rho)$.

We say that magnetizations $M, N \in \mathcal{M}(S)^3$ are *S*-equivalent if B(M) and B(N) agree on $\mathbb{R}^3 \setminus S$ in which case we write

$$\mathsf{M} \stackrel{S}{\equiv} \mathsf{N}$$

A magnetization M is said to be *S*-silent (or silent in $\mathbb{R}^3 \setminus S$) if it is *S*-equivalent to the zero magnetization; i.e., if B(M) vanishes on $\mathbb{R}^3 \setminus S$.

To fix notation, for $\mathsf{M} \in \mathcal{M}(S)^3$, let

$$\mathfrak{M}(\mathsf{M}) := \inf\{\|\mathsf{N}\|_{\mathcal{T}V} \colon \mathsf{N} \stackrel{\mathsf{S}}{=} \mathsf{M}\}.$$
(2)

Extremal Problem (EP-1)

Given
$$M_0 \in \mathcal{M}(S)^3$$
, find $M \stackrel{S}{\equiv} M_0$ such that $\|M\|_{TV} = \mathfrak{M}(M_0)$.

The second extremal problem involves minimizing the following functional defined for $\mathbf{M} \in \mathcal{M}(S)^3$, $f \in L^2(Q)$, and $\lambda > 0$, by

$$\mathcal{F}_{f,\lambda}(\mathsf{M}) := \|f - \mathsf{A}\mathsf{M}\|_{L^2(Q)}^2 + \lambda \|\mathsf{M}\|_{TV}.$$
(3)

Extremal Problem (EP-2)

Given $f \in L^2(Q)$, find $M_\lambda \in \mathcal{M}(S)^3$ such that

$$\mathcal{F}_{f,\lambda}(\mathsf{M}_{\lambda}) = \inf_{\mathsf{M}\in\mathcal{M}(S)^3} \mathcal{F}_{f,\lambda}(\mathsf{M}).$$

(4)

We will call a closed set $S \subset \mathbb{R}^3$ a slender set if $\mathcal{L}_3(S) = 0$ and each connected component C of $\mathbb{R}^3 \setminus S$ satisfies $\mathcal{L}_3(C) = \infty$.

Lemma

Let $S \in \mathbb{R}^3$ be closed and slender. Then M is S-silent if and only if $\operatorname{div} M = 0$. Let S be the closed unit Euclidean ball centered at the origin, $M = \mathcal{L}_3 \lfloor S$, $M = (4\pi/3)^{-1}Me_1$ and $N := \delta_0 e_1$ where δ_0 is the Dirac delta at zero.

Using the mean value theorem it follows that both have magnetic potential

$$\frac{1}{4\pi}\frac{x_1}{|\mathbf{x}|^3}$$

so M - N is S-silent.

However, M - N is not divergence free.

A set $B \subset \mathbb{R}^n$ is **purely 1-unrectifiable** if $\mathcal{H}_1(f(\mathbb{R}) \cap B) = 0$ for every Lipschitz map $f : \mathbb{R} \mapsto \mathbb{R}^n$.

Theorem

Suppose $S \subset \mathbb{R}^3$ is a closed, slender set. If $M \in \mathcal{M}(S)^3$ has support that is purely 1-unrectifiable and $N \in \mathcal{M}(S)^3$ is S-equivalent to M, then $\|N\|_{TV} > \|M\|_{TV}$ unless N = M.

We say that M is uni-directional if u_M is constant a.e. with respect to |M|.

Theorem

Let $S = \bigcup_{i=1}^{n} S_i$ for some disjoint closed sets S_1, S_2, \ldots, S_n in \mathbb{R}^3 and suppose that S is either compact or slender. Let $\mathbf{M} \in \mathcal{M}(S)^3$ be such that $\mathbf{M}_i := \mathbf{M} \lfloor S_i$ is uni-directional for $i = 1, 2, \ldots, n$. If $\mathbf{N} \in \mathcal{M}(S)^3$ is S-equivalent to \mathbf{M} , then $\mathbf{N}_i := \mathbf{N} \lfloor S_i$ and \mathbf{M}_i are S_i -equivalent for $i = 1, 2, \ldots, n$, moreover

$$\|\mathbf{M}\|_{TV} \le \|\mathbf{N}\|_{TV},\tag{5}$$

イロト イ理ト イヨト イヨト

with equality in (5) if and only if N_i is uni-directional in the same direction as M_i for i = 1, 2, ..., n. Furthermore, if S is slender and equality holds in (5), then M = N. We call a Lipschitz mapping $c:[0,\ell]\to\mathbb{R}^3$ a $\mbox{ rectifiable curve and let } C:=c([0,\ell])$ denote its image.

If c is an arclength parametrization of C; i.e., if c satisfies

$$\mathcal{H}_1(\mathbf{c}([\alpha,\beta])) = \beta - \alpha, \qquad \forall [\alpha,\beta] \subset [0,\ell],$$

then we call c an **oriented rectifiable curve**. We will call $R \in \mathcal{M}(S)^3$ defined through the relation

$$\langle \mathsf{R},\mathsf{f} \rangle = \int_0^\ell \mathsf{f}(\mathsf{c}(t)) \cdot \mathsf{c}'(t) \mathrm{d}t,$$

a curve magnetization.

An oriented rectifiable curve will be called a **rectifiable Jordan curve** if it is injective on [0, I) and such that $\mathbf{c}(0) = \mathbf{c}(I)$.

And its respective curve magnetization M is said to be a **loop silent magnetization**.

Any such magnetization is divergence free by the Gauss Green Theorem in the measure theoretical case.

Let $\mathcal{C} \subset \mathcal{M}(S)^3$ denote the collection of oriented rectifiable curves with topology inherited from $\mathcal{M}(S)^3$. Suppose div $\mathbf{M} = 0$ (as a distribution).

Smirnov [1, Theorem A] shows that ${\bf M}$ can be decomposed into elements from ${\mathcal C}.$

In particular, it can be proven that there is a positive Borel measure ρ on ${\mathcal C}$ such that

$$\mathsf{M}(B) = \int \mathsf{R}(B) \, \mathrm{d}\rho(\mathsf{R}),$$

We will only consider planar magnetizations, that is magnetizations supported on a closed $S \subset \mathbb{R}^2 \times \{0\}$.

Recall that any such S is a slender set.

Theorem

Let S be a closed subset of \mathbb{R}^2 and $\mathbf{M} \in \mathcal{M}(S)^3$ a silent magnetization. Then, for a.e. $t \in \mathbb{R}$ there is a countable family $\{\mathbf{N}_m^t\}$ of silent loop magnetizations such that

$$\|\mathbf{M}\|_{TV} = \int_{\mathbb{R}} \left(\sum \|\mathbf{N}_m^t\|_{TV} \right) \mathrm{d}t < +\infty, \tag{6}$$

and for any Borel set $B \subset \mathbb{R}^2$,

$$\mathsf{M}(B) = \int_{\mathbb{R}} \sum \mathsf{N}_{m}^{t}(B) \,\mathrm{d}t.$$
(7)

A set is said to be **tree-like** if it contains no rectifiable Jordan curves.

23 / 34

Corollary

Let S be a closed subset of \mathbb{R}^2 and $\mathbf{M} \in \mathcal{M}(S)^3$ be S-silent. Then, the support of \mathbf{M} contains a rectifiable Jordan curve. Hence, if S is tree-like the only S-silent magnetization is the zero magnetization. Regularized inverse problem

The problem we refer to EP2 has the following discreet analog:

$$\underset{\mathbf{m}}{\arg\min} \|\boldsymbol{b} - \boldsymbol{A}\mathbf{m}\|_{2}^{2} + \lambda \sum_{i} \|\mathbf{m}_{i}\|_{2}.$$

 $||b - A\mathbf{m}||_2^2$ measures the distance between the original field and the one generated by the reconstruction.

 $\sum_{i} \|\mathbf{m}_{i}\|_{2}$ is used to enforce sparsity.

Illustration for purely 1-unrectifiable recovery

2/11/2020 26 / 34

Illustration for Unidirectional recovery

Original

Cristóbal Villalobos Guillén

11 with 6e-4 relative residual

Cristóbal Villalobos Guillén

TV with 4e-4 relative residual (separated norm)

Cristóbal Villalobos Guillén

TV with 4e-5 relative residual (l2 norm of components)

Simulating full measurements, 5e-3 residual.

Recovery of Remanent Magnetizations

2/11/2020 32 / 34

Thank you

<≣>

・ロト ・ 日 ・ ・ 目 ・

S. K. Smirnov.

Decomposition of solenoidal vector charges into elementary solenoids, and the structure of normal one-dimensional flows.

St. Petersburg Math. J., 5:841-867, 1994.

Pertti Mattila.

Geometry of sets and measures in Euclidean spaces, volume 44 of *Cambridge Studies in Advanced Mathematics*. Cambridge University Press, Cambridge, 1995.

2/11/2020

34 / 34

Fractals and rectifiability.