Calcul scientifique et audio numérique

Matthieu Aussal

Ingénieur de recherche, responsable du groupe X-Audio Centre de Mathématiques appliquées de l'Ecole polytechnique

Séminaire DEFI Vendredi 28 février 2020

Groupe X-Audio

CALCUL HAUTE PERFORMANCE POUR L'ACOUSTIQUE

Eléments finis, équations intégrales, physique ondulatoire,

AUDIO ORIENTÉ OBJET

Mixage orienté objet, binaural interactif, traitement du signal temps-réel,

ACOUSTIQUE DES SALLES

Réverbération, ray-tracing, archéologie, réalité virtuelle,

LOCALISATION ET GUIDAGE

Réalité augmentée, synthèse binaurale, sonification, traitement du signal temps réel,

Principales thématiques

• Calcul Scientifique :

- Elements finis, équations intégrales
- Méthodes de compression

• Audio numérique

- Audio spatialisé, captation et restitution
- Acoustique des salles et auralisation
- Localisation dans l'espace

Développement logiciel

- Prototypes en Matlab (Gypsilab, myBino, libRta, etc)
- Librairies industrielles en C++ (matriX, ambisoniX, etc)

Partenaires

inventeurs du monde numérique

CONSERVATOIRE **NATIONAL SUPÉRIEUR** DE MUSIQUE ET DE DANSE DE PARIS

SATT. **PARIS-SACLAY**

GYPSILAB

https://github.com/matthieuaussal/gypsilab

<u>Avec la participation de :</u>

- François Alouges
- Martin Averseng
- Marc Bakry
- Yosra Boukari
- Algiane Froehly
- Houssem Haddar

<u>A venir :</u>

- Sopie Brou
- Dorian Lerévérend
- Philippe Moireau

Maillage

<u>https://github.com/matthieuaussal/gypsilab/openMsh</u>

- Lecture/écriture de maillages (.ply, .vtk, .stl, .mesh, .msh, etc.)
- n-d dimensions (n=0 à 3), simplex uniquement
- Affichage 3d, avec ou sans données (plot)
- Calcul de données élémentaires (volume, tangentes, normales, etc.)
- Outils d'extraction (surfaces, arrêtes, noeuds)
- Outils de manipulations (union, intersection, rotation, etc.)
- Nettoyage et raffinement (surface uniquement)
- Arbres récursifs (binaire, octree)

classdef msh

properties

```
vtx = []; % VERTEX COORDINATES (3 dimensions)
```

elt = []; % ELEMENTS LIST (particles, edges, triangles or tetrahedron)

```
col = []; % ELEMENT COLOR (group number)
```

end

Re-Maillage

<u>https://github.com/matthieuaussal/gypsilab/openMmg</u>

- Interface au remailleur MMG tools, avec Algiane Froehly (INRIA)
- Utilise la structure msh
- Maillage triangle 2d, 3d
- Maillage tétra 3d
- Interface par lecture/écriture de fichiers .mesh
- Toutes les options de MMG sont disponibles (maillage uniforme, carte de taille, anisotropie, etc...)

Exemples d'utilisation

Exemples d'utilisation

Exemples d'utilisation

Quadratures et Elements finis

<u>https://github.com/matthieuaussal/gypsilab/openDom</u> <u>https://github.com/matthieuaussal/gypsilab/openFem</u>

- Boite à outil d'éléments finis, avec François Alouges (CMAP)
- openDom :
 - Quadrature numérique de Gauss (nd)
 - Fonction intégral() pour écrire des formulations variationelles en matlab (e.g. freefem, phénix, etc.)
 - Intégration semi-analytique de noyaux intégraux (2d, 3d)
- openFem :
 - Elements finis PO, P1, P2 (nd) Raviart-Thomas, Nedelec (2d, 3d)
 - Condition de Dirichlet et jonctions par élimination
 - Intégrale sur domaine et intégrale de trace

Exemple d'utilisation FEM

% Gypsilab path run('../../addpathGypsilab.m')

% Meshes mesh = mshDisk(1000,1);

% Domain omega = dom(mesh,3);

% Finites elements space u = fem(mesh,'P1'); v = fem(mesh,'P1');

```
% Graphical representation
plot(mesh,'w');
hold on
plot(omega)
plot(u,'go')
hold off
axis equal;
title('Mesh representation')
xlabel('X'); ylabel('Y'); zlabel('Z');
alpha(0.99)
```

% Rigidity matrix K = integral(omega,grad(u),grad(v));

% Mass matrix tic M = integral(omega,u,v); toc

% Right hand side f = @(X) X(:, 1).^2; F = integral(omega,u,f);

% Solving uh = (K+M)\F ;

% Plot the solution figure graph(u,uh); title('Solution') xlabel('X'); ylabel('Y'); zlabel('Z'); view(30,30)

disp('~~> Michto gypsilab !')

Exemple d'utilisation FEM

Exemple d'utilisation FEM

Exemple d'utilisation BEM

% Parameters

N = 1e3 X0 = [-1 0 0] k = 5 PW = @(X) $exp(1i^{k^{X}X'}X');$

% Meshes sphere = mshSphere(N,1); square = mshSquare(5*N,[5 5]);

% Graphical representation

figure plot(sphere) axis equal hold on plot(square) plot(sphere,real(PW(sphere.vtx))) plot(square,real(PW(square.vtx))) title('Incident wave') xlabel('X'); ylabel('Y'); zlabel('Z'); hold off

% Helmholtz kernel = $\exp(ik|x-y|)/|x-y|$ Gxy = @(X,Y) 1/(4*pi) .* femGreenKernel(X,Y,'[$\exp(ikr)/r$]',k);

% Domain sigma = dom(sphere,3);

% Finite elements u = fem(sphere,'P1'); v = fem(sphere,'P1'); % Boundary operator S S = integral(sigma,sigma,u,Gxy,v);

% Regularization Sr Sr = regularize(sigma,sigma,u,'[1/r]',v);

% Incident wave RHS = - integral(sigma,u,PW);

% Solve linear system [S] * lambda = P0 lambda = (S+Sr) \ RHS;

% Radiative operator Sdom = 1/(4*pi) .* integral(square.vtx,sigma,Gxy,v);

% Regularization Sreg = 1/(4*pi) .* regularize(square.vtx,sigma,'[1/r]',v);

% Domain solution Pdom = (Sdom + Sreg) * lambda + PW(square.vtx);

% Graphical representation figure plot(sphere,'w') axis equal; hold on plot(square,abs(Pdom)) title('Total field solution') colorbar hold off

disp('~~> Michto gypsilab !')

Exemple d'utilisation BEM

Exemple d'utilisation BEM

Matrices hiérarchiques (H-Matrix)

<u>https://github.com/matthieuaussal/gypsilab/openHmx</u>

- Compression et algèbre hiérarchique en matlab natif
- Arbre binaire (nd) et calculs récursifs
- Feuilles pleines (full), creuses (sparse) ou compressées (AB)
- Algo de recompression ACA, SVD, RSVD, QRSVD, etc.
- Pivotage total (plein/creux) ou partiel (noyaux G(X,Y))
- Surcharges des opérateurs de base (+,-,*,/)
- Factorisation Choleski, LDLt, LU, etc.
- Affichage de la structure hiérarchique (spy)
- Complexité Nlog(N) pour les noyaux non oscillants, N^(3/2) en régime harmonique limite (kd=1).

[...] % Boundary operator S tol = 1e-3; S = 1/(4*pi) .* integral(sigma,sigma,u,Gxy,v,tol);

% Regularization Sr Sr = 1/(4*pi) .* regularize(sigma,sigma,u,'[1/r]',v); S = S + Sr;

% Incident wave RHS = - integral(sigma,u,PW);

```
% Solve linear system [S] * lambda = P0
[L,U] = lu(S);
lambda = U \ (L \ RHS);
```

% Visu

figure subplot(2,2,1:2); spy(S) subplot(2,2,3); spy(L) subplot(2,2,4); spy(U)

% Radiative operator

Sdom = 1/(4*pi) .* integral(square.vtx,sigma,Gxy,v,tol); [...] Rajouter un paramètre de précision « tol » au mot clé **intégral() !**

Fast Free-memory Method (FFM)

<u>https://github.com/matthieuaussal/gypsilab/openFfm</u>

- Convolution type Fast Multipole, avec Marc Bakry (CMAP)
- Compression analytique de noyaux intégraux (3d)
 - Interpolation Lagrange pour tout noyaux
 - Interpolation Geggenbauer pour Helmholtz
- Octree et calculs récursifs
- Résolution uniquement itérative
- Aucun stockage mémoire temporaire -> objectif HPC!
- Complexité Nlog(N) pour les noyaux non oscillants
- Complexité N^(3/2) théorique régime harmonique limite (kd=1),
- Complexité Nlog(N) observée pour tout noyaux/fréquence

Fast Free-memory Method (FFM)

k = 1

Ν

Fast Free-memory Method (FFM)

Exemple d'utilisation FFM

[...] % Boundary operator S S = 1/(4*pi) .* integral(sigma,sigma,u,'[exp(ikr)/r]',k,v,tol);

% Regularization Sr Sr = 1/(4*pi) .* regularize(sigma,sigma,u,'[1/r]',v); S = S + Sr;

% Incident wave RHS = - integral(sigma,u,PW);

% Solve linear system [S] * lambda = P0 lambda = mgcr(@(V)S*V,RHS,[],tol,100);

```
% Radiative operator
Sdom = 1/(4*pi) .* integral(square.vtx,sigma,'[exp(ikr)/r]',k,v,tol);
[...]
```

Exemple d'utilisation FFM

+ Iteration 58 in 3.49 seconds with relative residual 1.02e-03. + Iteration 59 in 3.48 seconds with relative residual 9.67e-04. mgcr converged at iteration 59 to a solution with relative residual 9.669e-04. Operateur S très mal conditionné...

Utiliser formulation « bien posée »!

Exemple d'utilisation FFM

Comparaison de solveur rapide (2015)

Context : For all points $(\mathbf{x}_i)_{i \in [1,N]}$ and $(\mathbf{y}_j)_{j \in [1,N]}$ in \mathbb{R}^3 , compute :

$$u(\mathbf{x}_i) = \sum_{j=1}^N \frac{1}{4\pi |\mathbf{x}_i - \mathbf{y}_j|} f(\mathbf{y}_j)$$

Results : 4 cores. at 2.9 GHz, 32 GO de ram, Matlab R2014a, $(\mathbf{x}_i)_{i \in [1,N]}$ and $(\mathbf{y}_j)_{j \in [1,N]}$ on the unit sphere S^2 :

N	Time (s)	Time 4 cores (s)	Memory peak		
104	2.04	0.72	1 Mo		
10 ⁵	328	83.9	10 Mo		

Comparaison de solveur rapide (2015)

Context : For all points $(\mathbf{x}_i)_{i \in [1,N]}$ and $(\mathbf{y}_j)_{j \in [1,N]}$ in \mathbb{R}^3 , compute :

					Λ /				
	N	Build t	ime (s)	MV time (s)	LU time (s)	Mem		
		1 core	4 cor	es	1 core	1 core			
Result	104	3.18	3.25		0.16	9.88	100 Mo)	
	10 ⁵	37.9	19.2		1.68	193	1 Go		
(∧ <i>i</i>) <i>i</i> ∈[10 ⁶	518	214		25	4120	10 Go		
	N	Time	e (s)	Т	ime 4 cores	(s) Memo	Memory peak		
	104	2.04			0.72	1	1 Mo		
	10 ⁵	32	8		83.9	10	10 Mo		

	Ν	Time (s)) Time	e 12	cores (s)	Error L2		Mem	ory peak		
C	10 ⁴	2.04		9.08		8.03 10 ⁻⁵		1 Mo)	
	10 ⁵	9.30		1	7.1	1.34 10		-4	1	0 Mo	
	10 ⁶	87.8		33.4 1.		1.	35 10 ⁻⁴		100 Mo		
	107	1063		169		$1.98 10^{-4}$		-4	1 Go		
Conte	10 ⁸	_		14	499	$1.81 \ 10^{-4}$		-4	1	.0 Go	pute :
	10 ⁹	-		11	.340	$3.11\ 10^{-4}$		-4	100 Go		
	N	Build t	time (s)		MV time (s)		LU t	U time (s)		Mem	
		1 core	4 cores	s	1 core	1 core		1 core			
Docul	104	3.18	3.25		0.16 1.68 25		9.88			100 Mo	-),
$(\mathbf{x}_i)_i$	10 ⁵	37.9	19.2					193 4120		1 Go	
(^ <i>i</i>) <i>i</i> ∈[10 ⁶	518	214				Z			10 Go	
	N	Time	(s)	Ti	Time 4 cores (s)		(s)	Memory peak		-	
	104	2.0)4		0.72			1 Mo			
	10 ⁵	32	8		83.9			10 Mo			

Block Matrix Method (BMM)

<u>https://github.com/matthieuaussal/gypsilab/openBmm</u>

- Algèbre par bloc de type :
 - Plein (full)
 - Creux (sparse)
 - Hiérarchique (hmx)
 - Produit matrice-vecteur (ffm)
- Calcul parallèle en mémoire partagée ou distribuée
- Formulations variationelles vectorielles (Stokes, Calderon etc.)
- Couplage multi-physique (FEM/FEM, FEM/BEM, BEM/BEM)
- Surcharges des opérateurs de base (+,-,*,/)
- Concaténation de structures simplifiée
- Affichage de la structure bloc (spy)

Exemple de Block Matrix

Lancer de rayons

<u>https://github.com/matthieuaussal/gypsilab/openRay</u>

- Tir de rayons droits, avec Robin Gueguen (ISCD)
- Outil pour l'acoustique des salles et l'auralisation
- Réflexions spéculaires sur éléments triangles
- Accélération par méthode type « Divide & Conquer »
- Générations de sources images et réponses impulsionelles

∗

APPLICATIONS ...

Helmholtz - Calcul de filtre HRTF

Maillage par Symare & MMG

Helmoltz - Diffraction HF (beTSSI)

Helmoltz - Diffraction HF (beTSSI)

Maxwell - Diffraction HF (NASA Almond)

Maxwell - Diffraction HF (NASA Almond)

Maxwell - Diffraction HF (ISAE 2019)

Coll. Marc Bakry

Coll. Marc Bakry

FIGURE 15 – Vue transversale du maillage de la table

FIGURE 15 – Vue transversale du maillage de la table

Coll. François Alouges

Coll. Emile Parolin

Autres applications

- Fluide de Stokes (A. Lefevre, L. Giraldi, L. Berti, ...)
- Simulation EEG (A. Gramfort et al)
- Filtrage de Kalmann (P. Moireau)
- Complétion de données (Y. Boukari et H. Haddar)
- Acoustique de salles complexes (R. Gueguen)

FIN DE LA 1ère PARTIE...

Propagation du son dans l'air

Propagation du son dans l'oreille

Propagation du son dans la cochlée

Fréquence audibles

Fonction de transfert de tête (HRTF)

Mesure des HRTF

Simulation numérique des HRTF

Acquisition morphologique

Maillage de calcul (géométrie)

$$\begin{cases} -(\Delta u^{i} + k^{2}u^{i}) = 0 \in \Omega^{i}, \\ -(\Delta u^{e} + k^{2}u^{e}) = 0 \in \Omega^{e}, \\ \lim_{r \to +\infty} r (\partial_{r}u^{e} + iku^{e}) = 0, \end{cases}$$
$$u(\mathbf{x}) = \int_{\Gamma} G(\mathbf{x}, \mathbf{y})\lambda(\mathbf{y})d_{y} - \int_{\Gamma} \partial_{n}G(\mathbf{x}, \mathbf{y})\mu(\mathbf{y})d_{y}.$$

Equations de propagation des ondes

Mesures numériques

APPLICATIONS ...

Ingénierie du son

Coll. A. Baskind, J.C. Messonier, F.Salmon

Ingénierie du son

Coll. A. Baskind, J.C. Messonier, F.Salmon

Jeux vidéo

PSC X2015

Guidage audio pour le sport

Coll. S. Ferrand, F. Alouges et al

Guidage audio pour le sport

Coll. S. Ferrand, F. Alouges et al

Guidage audio pour le sport

Coll. S. Ferrand, F. Alouges et al

Mon Cartable Connecté

Coll. D. Lereverend, H. Haddar et al

Mon Cartable Connecté

Coll. D. Lereverend, H. Haddar et al

Mon Cartable Connecté

Coll. D. Lereverend, H. Haddar et al

CONCLUSION & PERSPECTIVES